

Contents

- On Segregative Behaviors Using Flocking and Velocity Obstacles
- Maintaining Team Coherence under the Velocity Obstacle Framework
- Prioritized Group Navigation with Formation Velocity Obstacles
- An Adaptive Velocity Obstacle Avoidance Algorithm for Autonomous Surface Vehicles
- Distributed Collision-Avoidance Formation Control: A Velocity Obstacle-Based Approach
- Distributed Lyapunov-based model predictive control for collision avoidance of multi-agent formation
- A General Approach to Coordination Control of Mobile Agents With Motion Constraints

ON SEGREGATIVE BEHAVIORS USING FLOCKING AND VELOCITY OBSTACLES [2012 DARS]

Purpose

 Swarm navigation combining hierarchical abstractions, flocking behaviors, and an efficient collision avoidance mechanism

Methodology

- Introducing penalty function to allow to select velocity belonging to VO.
- Parameter triples (α, β, w)

$$\mathbf{v}_{i}^{\text{flock}} = \mathbf{v}_{i}^{\text{pref}} + \alpha(\mathbf{v}(\boldsymbol{\Phi}_{k}) - \mathbf{v}_{i}) + \beta(\mathbf{p}(\boldsymbol{\Phi}_{k}) - \mathbf{p}_{i})$$

$$P_{i}(\mathbf{v}_{i}') = \frac{w}{c_{i}(\mathbf{v}_{i}')} + \|\mathbf{v}_{i}^{\text{flock}} - \mathbf{v}_{i}'\|,$$

$$\mathbf{v}_{i}^{\text{new}} = \underset{\mathbf{v}_{i}' \in S}{\operatorname{argmin}} P_{i}(\mathbf{v}_{i}')$$

Drawback

The same behavior cannot be guaranteed with small sensing neighborhood.

• Improvement

VGVO (virtual group)

$$VGVO_{\Phi_k}^i(\mathbf{v}(\Phi_k)) = \{\mathbf{v}_i' | \lambda(\mathbf{p}_i, \mathbf{v}_i' - \mathbf{v}(\Phi_k)) \cap C(\mathbf{p}_i, \Phi_k) \neq \emptyset\},$$
$$C(\mathbf{p}_i, \Phi_k) = \text{Shape}(\bigcup_{j \in \Phi_k} R(\mathbf{p}_j)) \oplus -R(\mathbf{p}_i),$$

$$\mathit{VGRVO}_{\Phi_k}^i(\mathbf{v}(\Phi_k), \mathbf{v}_i) = \{\mathbf{v}_i'' \,|\, 2\mathbf{v}_i'' - \mathbf{v}_i \in \mathit{VGVO}_{\Phi_k}^i(\mathbf{v}(\Phi_k))\}.$$

On Segregative Behaviors Using Flocking and Velocity Obstacles

Vinicius Graciano Santos Mario F. M. Campos Luiz Chaimowicz

Federal University of Minas Gerais

MAINTAINING TEAM COHERENCE UNDER THE VELOCITY OBSTACLE FRAMEWORK [2012 AAMAS]

Purpose

 Loss of Communication Obstacle, aiming to maintain proximity among agents by imposing constraints in the velocity space and restricting the set of feasible controls.

LOCO CONSTRUCTION

- To be noted, τ is tuned through comparison between V_{valid} and $V_{threshold}$
 - $norm(V_{valid}) < norm(V_{threshold})$, time horizon τ decreased;
 - Otherwise.

$$(q_{ab}^{X}(t+\tau))^{2} + (q_{ab}^{Y}(t+\tau))^{2} \leq d_{prox}^{2} \Rightarrow$$

$$(q_{ab}^{X}(t) + \tau * (V_{b}^{X} - V_{a}^{X}))^{2} + (q_{ab}^{Y}(t) + \tau * (V_{b}^{Y} - V_{a}^{Y}))^{2} \leq d_{prox}^{2} \Rightarrow$$

$$(\frac{q_{ab}^{X}(t)}{\tau} + V_{b}^{X} - V_{a}^{X})^{2} + (\frac{q_{ab}^{Y}(t)}{\tau} + V_{b}^{Y} - V_{a}^{Y})^{2} \leq \frac{d^{prox^{2}}}{\tau^{2}} \Rightarrow$$

$$(V_{a}^{X} - \frac{q_{ab}^{X}(t)}{\tau} - V_{b}^{X})^{2} + (V_{a}^{Y} - \frac{q_{ab}^{Y}(t)}{\tau} - V_{b}^{Y})^{2} \leq (\frac{d_{prox}}{\tau})^{2}$$

CONSERVATIVE APPROXIMATION

INTEGRATION

• Weighted velocity selection

$$q_{avg} = \frac{\sum_{i}^{n} \frac{d_{i}}{d_{prox}} q_{i}}{\sum_{i}^{n} \frac{d_{i}}{d_{prox}}}$$

$$v_a^{pref} = \frac{d_{avg}}{d_{prox}} v_{avg} + \frac{d_{prox} - d_{avg}}{d_{prox}} v_{goal}$$

• To be noted: when there's no valid velocity, agent remains its current velocity

9

METRICS

- total number of collisions during the entire experiment
- computation time per frame,
- total time to solve the problem,
- average ratio of respected proximity links per frame,
- and number of successful runs.

Figure 7: The environments on which the experiments were executed

Figure 10: An example of the paths taken by 24 agents in the PACHINKO environment for the RVO (left) and LOCO (right) approach.

PRIORITIZED GROUP NAVIGATION WITH FORMATION VELOCITY OBSTACLES [2015 ICRA]

Purpose

 navigating a group of robots having prioritized formations amidst static and dynamic obstacles. At each planning cycle, we compute a **new** formation which accounts for both these **priority** values and the **safe** progress of the robots towards their goals.

Methodology

- Group planning* (main discussion, novelty)
 - To find F* which balances between user's input and collision-free progress
- Individual planning
 - Slightly discussed

INFERENCE

Fig. 1. **Defining Arbitrary Formations** We can decompose any arbitrary formation into a linear combination of the user provided template formations T plus some noise. For example, the staggered formation on the far right is a combination of the line-abreast and column formations with $a_1 = 0.56$ and $a_2 = 0.43$, respectively, and $\sigma = 0.08$.

- Given a formation F, cost function is defined as: $E(F) = p_F (\mathbf{v}_F \cdot \hat{\mathbf{v}}^{\text{pref}})$
- To obtain a formation F* from set of Fs, it's assumed to be a convex combination of k provided templates with noise.

$$F = a_1 T_1 + \dots + a_k T_k + \mathcal{N}(0, \sigma^2), \text{ s.t. } \sum_{i=1}^k a_i = 1,$$

• Infer the value of priority of formation F.

$$p_F = a_1 p_1 + a_2 p_2 + \dots + a_k p_k - \gamma \sigma,$$

• Infer the value set given the formation F.

$$\underset{a_1,\ldots,a_k,\sigma}{\operatorname{argmax}} P(a_1,\ldots,a_k,\sigma|F) \tag{7}$$

$$= \underset{a_1,\ldots,a_k,\sigma}{\operatorname{argmax}} \mathcal{L}(F|a_1,\ldots,a_k,\sigma) + \mathcal{L}(a_1,\ldots,a_k) + \mathcal{L}(\sigma), \qquad \qquad \underset{a_1,\ldots,a_k,\sigma}{\operatorname{argmax}} \frac{-[D(F,a_1T_1+\ldots+a_kT_k)]^2}{\sigma^2}.$$

where $\mathcal{L}(\cdot)$ denotes the *log likelihood* function.

FORMATION VELOCITY OBSTACLE

• Treat formation as a bounding box with w and h.

Tuning γ

Fig. 6. **Effect of** γ **parameter.** Agents navigate through a passage given two formations: line abreast and single column. (a) With a small value of γ agents adopt an ad-hoc formation which fits the obstacle. (b) With a larger value of γ agents follow very closely the single column formation.

AN ADAPTIVE VELOCITY OBSTACLE AVOIDANCE ALGORITHM FOR AUTONOMOUS SURFACE VEHICLES [2019 IROS]

Purpose

 A real-time obstacle avoidance for surface vehicle with protective zone concept, using particle swarm optimization to minimize a multicriteria evaluation metric(danger, deviation and cross distance)

Methodology

Protective Zone

(a) Single static obstacle.

(b) Static and dynamic obstacles.

Kinematics constraint

(a) Single static obstacle.

(b) Static and dynamic obstacles.

VELOCITY SELECTION

• Multicriteria optimization object function h(V)

$$\min_{\Delta v_d, \Delta \theta_d, \nabla_i} h(V_i)$$

$$h(V_i) = \varepsilon^{\mathsf{T}} \cdot \psi$$

$$PSO$$

$$\varepsilon = \begin{bmatrix} |\Delta v_d| \\ |\Delta \theta_d| \\ \nabla_i \end{bmatrix}, \ \Delta v_d, \Delta \theta_d \in [-1, 1], \ \nabla_i \in [0, 1]$$

RESULT

DISTRIBUTED LYAPUNOV-BASED MODEL PREDICTIVE CONTROL FOR COLLISION AVOIDANCE OF MULTI-AGENT FORMATION

- Navigate groups of robots in a shared environment while maintaining segregation among groups.
 - Extended concept of RVO with flocking behaviors and hierarchical abstractions.

ARRANGEMENT

Q&A

THANK YOU

