

Automatic
Control &
Systems
Engineering.

Path Planning Using Mixed Integer Linear Programming

Hong Lu

September, 2021

Supervisor: Dr. Paul Trodden

A dissertation submitted in partial fulfilment of the requirements for the

degree of MSc in Robotics.

ABSTRACT

A comprehensive study on the Mixed Integer Linear Programming (MILP) path plan-

ning is carried out under the mathematical programming framework. Various control ar-

chitectures for different purposes are studied, implemented and compared in this paper.

The concept of the MILP is introduced at the beginning, then its combination with the

path planning is illustrated in detail along with its applications under separated scenar-

ios considering various requirements, such as collision avoidance between the agents,

obstacle avoidance and waypoint handling when multiple tasks existed. Moreover, it-

erative algorithm is also studied from two different perspectives in this paper which

significantly reduce the computation time. Apart from global planning, the control ar-

chitecture with the combination of the local planning scheme is also studied under the

framework of Receding Horizon Control. The different resolutions of the MILP-RHC

enables the vehicle not only to navigate through the environment safely and without

falling into the entrapment using the high-level map information, but also to merely

consider the low-level sensed environment. Such online fashioned planning relieves the

computational burden significantly. In the last section, the extended capabilities of the

MILP path planner is also studied both in finer trajectory generation for Quadrotor UAV

and in 3D climber as well. Extensive simulations and results are shown in each section

for the MILP path planning studies.

I

ACKNOWLEDGEMENTS

I hereby want to sincerely thank several people who made this come to true during this

pandemic period. First, my advisor Dr. Paul Trodden introduced me into this topic and

also into some insightful papers which appeared to be the critical starter for this whole

project. The efficient guide provided by Dr. Paul Trodden also helped a lot to this

project. I would also want to thank my parents Mr. Lu, Jinhua and Ms. Xu, Qunsuo,

along with Miss Tian, Rui, for their unconditional support and care during this period.

II

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Aims and Objectives . 2

1.3 Report Overview . 3

1.4 Project Management . 3

2 Literature Review 6

2.1 Existing algorithms for the planning 6

2.2 Mathematical programming for the planning problems 8

3 MILP Path Planning 12

3.1 Introduction . 12

3.1.1 MILP cases . 13

3.1.2 Solutions to the MILPs . 15

3.2 Problem Statement . 17

3.3 Notations for Problem Formulation . 18

3.4 Vehicle Dynamics . 19

3.4.1 State Equations . 19

3.4.2 Velocity and Control Input Constraints 20

3.5 Collision and Obstacle Avoidance . 21

3.5.1 Collision Avoidance . 21

3.5.2 Obstacle Avoidance . 22

3.6 Waypoint Handling . 23

3.7 The Objective Function . 23

3.8 Simulation and Results . 25

III

3.8.1 Implementation Details . 25

3.8.2 Example: Single Vehicle with Obstacle Avoidance 25

3.8.3 Example: Multiple Vehicles with Collision Avoidance 29

3.8.4 Example: Single Vehicle with Waypoint Handling 30

3.8.5 Example: Single Vehicle with Wind Disturbance 32

3.9 Iterative Refinement using MILP . 34

3.9.1 Iterative time selection algorithm for MILP path planning . . . 34

3.9.2 Iterative obstacle inflation algorithm for MILP path planning . . 36

3.9.3 Iterative MILP with minimum time objective 39

4 Receding Horizon Control 41

4.1 Introduction . 41

4.2 Receding Horizon Path Planner Overview 42

4.3 Fixed Horizon Minimum Time Controller 43

4.4 Simple Goal Cost Estimation . 44

4.5 Modified Cost Point Estimation and RHC 46

4.5.1 Cost Map . 49

4.5.2 Example: Local minima environment 51

5 Extended capabilities of MILP 54

5.1 Component of Trajectory Generation 54

5.1.1 Quadrotor Kinematics . 55

5.1.2 Quadrotor Dynamics . 56

5.1.3 Trajectory generation based on MILP path planner 58

5.2 Extension to the 3D applications . 63

6 Conclusion and Future work 65

7 Appendix I

7.1 Planner.m . I

7.2 Planner.mod . V

7.3 RHC.m . IX

8 Self-review

Chapter 1

Introduction

1.1 Background and Motivation

The industries all over the world is undergoing intelligent transformation, through man-

ufacturing to transportation, many automatic toolboxes have been applied to the appli-

cations along with the emergence of the artificial intelligence. Among various domains,

the appearance of the autonomous mobile robots is the most outstanding one. Start-

ing from the DARPA Urban Challenge in 2003, with the foundations of different au-

tonomous vehicle companies, like Waymo, Tesla, Pony.ai and Baidu, etc., the demands

of the relative techniques in image and video processing, decision and planning, mobile

computing increased to a great extent. In general, according to [38], the main com-

ponents of the autonomous vehicle software system includes perception, planning and

control. Moreover, for multiple vehicles, the communication and coordination tech-

niques are also need considering.

This project mainly concentrates on the component of the planning for the au-

tonomous vehicles where many techniques emerged in the last decades. Planning al-

gorithms firstly appeared in the graph theory as ’routing’ problem, many classic algo-

rithms such as Dijkstra’s, A* and D* [11, 20, 49] can be applied for finding the shorted

paths between start and terminal points. After decades of the research, the more specific

domains named as motion planning is proposed. Since spatial planning is introduced

in [33], the planning problem is introduced with the obstacles and generalized as finding

a collision free path from the start to the terminal point in the configuration space. More

interestingly, in [6], the complexity of the motion planning is proposed and its hardness

1

Figure 1.1: Practical techniques for car parking in [12]

is proved by Canny. Currently, many algorithms are based on the classical thoughts

including Road Map, Cell Decomposition, Artificial Potential Field and Mathematical

Programming. Technically, these methods are not mutually exclusive, many work has

combined them into the more sophisticated planner. Many developments [2] have been

made using mathematical programming in the motion planning and this motivates the

deeper look into this topic.

1.2 Aims and Objectives

As illustrated in Sec. 1.1, the methods for the motion planning are varied. This project

aims to design and implement a path planner for the robot(s) using Mixed Integer Linear

Programming (MILP), which belongs to the mathematical programming, with various

avoidance constraints for single or multiple tasks appointment. The main objectives for

reaching such aim are as follows:

• To model the motion control problems of the vehicle, including kinematics and

motion constraints, into MILP model.

• To develop various optimization objectives for single and multiple vehicle(s) in

various tasks assignments.

• To improve the efficiency and robustness of the simple MILP path planner. Itera-

tive MILP planner is studied for the computation efficiency and the uncertainties

2

would also be incorporated into the model.

• Demonstrate and validate through MATLAB or ROS based simulation.

1.3 Report Overview

The organization of the following chapters are as follows: Chapter. 2 provides the liter-

ature review in the mathematical programming applied in the motion planning domain

and emphasize its advantages and disadvantages from various aspects along with the

analysis of the methods this report adopted.

Chapter. 3 studied the application of the MILP to the path planing problems where

the vehicle dynamics and environment are modelling using MILP. The relative objective

functions are proposed and studied. Also, the refinement iterative MILP algorithm is

also studied from two different perspectives for relieving the burden of computing.

Chapter. 4 studied the MILP-RHC (Mixed Integer Linear Programming - Reced-

ing Horizon control) architecture where the local constrained optimal path is planned

using MILP within the framework of RHC. The RHC technique can better handle the

uncertainty while the global information is unknown. To improve the robustness, high-

level abstracted global information is also added to the planner, thus the controller with

various resolutions are studied in this section as well.

Chapter. 5 studied the extended capabilities of the MILP path planner. The MILP

path planning is adopted as the component of the quadrotor trajectory generation for

finer trajectory generation in this section. More interestingly, a three dimensional ap-

plication as the city climber is also simulated in this section with the help of the MILP

path planner.

Chapter. 6 concludes the work in this project and the future work is proposed as

well.

1.4 Project Management

This section provides the summary of the project management where the original gantt

chart is shown in Fig. 1.2. The revised gantt chart which is actually conducted during

the project is shown in Fig. 1.3.

3

Figure 1.2: Planned Gantt Chart at the start of the project

The actual execution of the project amends more literature review time after receiv-

ing the feedback from the supervisor. The start date of the manuscript started earlier

than the planned date which gave the abundant time for the revision of the layout and the

content of the project. The project was carried out according to the planning gantt chart

strictly which reflects that the original consideration for the workload is reasonable and

considerate.

4

Figure 1.3: Actual Gantt Chart conducted during the project

5

Chapter 2

Literature Review

This chapter provides the literature review in the motion planning domain as it solves

the basic problem as how the mobile robot(s) moves safely and successfully in the free

configuration space. During the last two decades, many studies have been conducted

and come along with plenty of applications. The first section would offer as the review

of the existing planning algorithm. The second section would focus on the mathemat-

ical programming for the vehicle planning issues and show the common framework

of such method, moreover, it would also focus on the methods that handle the uncer-

tainties within the mathematical programming domain. The last section would review

the applications of the planning algorithm to illustrate its functions during the whole

autonomous loop.

2.1 Existing algorithms for the planning

The core of the planning algorithm is to optimize the objective functions, though some

might be implicit, subject to certain constraints. These constraints are aroused from the

certain requirements such as collision avoidance, obstacle avoidance or waypoint ap-

pointments, etc. In various environment settings, the given information of the vehicles

or environments are different. Each planning algorithm handles various observations of

the configuration space.

The discrete planning problems are the simplest to describe as the whole state space

would be finite in usual cases. Each discrete state could be actually marked by an

unique integer. No uncertainties need considering in the discrete planning problems

6

as the probability theory could be avoided as all the models are completely know and

detectable. Without losing generality, most planning problems could be discretized into

the grid search problem. The search purpose on these grid systems can also be defined

as feasibility search problem and optimal search problem as described in [31]. The

general search for the feasible plans is systematic where the visited node is marked

until the goal is searched in the grid space. An insightful abstraction in [31] suggests

that the differences between each search algorithms exist in the sort function for priority

queue Q. The priority queue is normally a FIFO (First-In First-Out) queue. Thus the

one has waited longest in the queue would be chosen for the search. Then the success

states of the chosen one would be search, the iteration ends when the goal is reached,

otherwise the search continues when the Q is not empty. Such method seems to just

give the result that whether the goal could be reached instead of generating a plan for

reaching the goal. The Breath-first search [25] adopts the FIFO queue as Q which

selects states as the first-come, first-serve principle. This means whichever plan with

k step, the k+1 step would be explored. Such method of the searching could cause

computation burden because that the systematic search would result in the wave like

visualization as many wavefront states bring out unnecessary computations. Thus, the

Depth-first search could be adopted as searching in the certain direction by changing Q

as a stack, following the LIFO (Last-In First-Out) principle. This means the last visited

state would be chosen for the front line. Such aggressive behavior seems desirable for

handling the long plan. However, depth-first search might miss out the remaining larger

search space as the iterations continues.

Another effective single-source shortest paths method is Dijkstra’s algorithm [11].

This algorithm is based on the graph where the environment is abstracted as nodes and

edges where the cost of the path is the sum of the edges’ length from start to the goal.

With the metric of the edge length, the priority queue Q is adopted for sorting the cost-

to-come from the source node of each node within the graph. Because the queue content

represents the path information, the search direction can efficiently explore the free

configuration space as each time the node with shortest cost-to-come would explored

instead of FIFO principle.

To combine with the cost-to-go, the A* [20] proposed that the planning algorithm

should also corporate the empirical distance from the given state to the goal. The ar-

7

Figure 2.1: The state transition in 2D grid movement problem in [31]

chitecture of the A* is exactly same to the Dijkstra’s one, the only difference is that the

priority queue Q where in A*, the cost-to-go value is also considered combined with

the existed cost-to-come in Dijkstra’s algorithm.

Moreover, there also exists the optimal planning problem where in discrete sce-

nario, [30] categorized as the discrete optimal planning and its method is referred as

’value iteration’. Its solution commonly could be described in ’Dynamic Programming’

which is similar to that of mathematical programming.

2.2 Mathematical programming for the planning prob-

lems

Mathematical programming has explicitly presented the objective function and the cor-

responding constraints and the solver for that could be pure mathematical challenge

where many improvements are proposed. In [2], mathematical programming cate-

gories are proposed for multi-vehicle problems and the general framework is proposed

as in (2.1):

8

minimize Φ(x,y)

subject to Ωi(x,y), i = 1...m

x ∈ Rn1,y ∈ Zn2,

(2.1)

where the equation represents that the objective function Φ(x,y) subject to a set of

constraints Ωi(x,y) ≤ 0, where x and y are continuous and discrete variables for the

decision, respectively. Moreover, Ω represents the mapping from the decision vari-

able space to the constraints’ space: Rn1×Zn2 −→ Rm. According to [1], the categories

happened when there are different values for n1 and n2. When n1 = 0, the pure inte-

ger optimization problem is represented. When n2 = 0, (2.1) became the continuous

optimization problem. When n1,n2 > 0, the mixed integer optimization problem is pre-

sented. The nonlinearity of the objective function or of any constraint would lead the

problem to be nonlinear. Among these, the Mixed-Integer Linear Programming (MILP)

is well studied for the favorable theoretical guarantees and efficient computation. To be

more specific, the general constraints could be replaced by more practical terms shown

in (2.2):

minimize Φ(x,y) (Ob jective Function)

subject to K (x,y) ≤ 0, (Kinematics)

D(x,y) ≤ 0, (Dynamics)

C (x,y) ≤ 0, (Obstacle and Collision Avoidance)

H (x,y) ≤ 0, (Communication)

O(x,y) ≤ 0. (Other constraints)

(2.2)

Under this mathematical programming framework, once the constraints are con-

structed, only appropriated objective function needs to be proposed. Thus the math-

ematical programming could handle the multiple complex constraints simultaneously.

The constraints in the reality are listed as follows in general, such as obstacle avoid-

ance, collision avoidance, communication topology, dynamics constraints and other

constraints listed in (2.2). In this section, various optimization objective functions and

constraints are reviewed. In [45], the safe vehicle trajectory generation under receding

horizon framework is proposed. The backup trajectories are planned during these plan-

ning episode. In [10], A semi-definite programming for multi-robot tracking has been

9

formulated for the cluttered environment with obstacles. The work utilized the second

least eigenvalue of the Laplace matrix of the connectivity graph and yielded the optimal

robots configurations in the certain time steps. The whole problem was formulated in

MINLP with connected communication graph at all time. In [41], the fixed-wing air-

craft was studied as the trajectory planning constrained to the turning rate constraint.

Moreover, more than one objective function are proposed such as time consumption

and control input. This work also shown that under appropriated modification in the

mathematical programming framework, many cost functions could be solve efficiently.

In this work, only the global planning and one-time fashion was adopted, such fash-

ion was also implemented in [46, 8]. To reduce the computation burden of the global

planning, more techniques were proposed cooperating with the mathematical program-

ming. In [13], the iterative methods were proposed for minimising the control input

of the omni-directional vehicle for moving in the two dimensional configuration space.

Instead of using fixed discretized time steps, the time selection algorithm was proposed

by using feasibility and optimality in a flexible manner. Such thought of using variable

time step is similar to that the discrete planning illustrated in [31]. The iterative method

first formulate the objective as the feasibility problem as to check the first iteration’s

possibility as the solution. Then the optimal objective function would be set and new

time step would be selected under the environmental constraints. In the discrete space

and time planning method, two factors for the collision avoidance are time discretiza-

tion and obstacle inflation. Former is to actively avoid the collision by selecting the new

time step while the later one is passively growing the obstacle to ’push’ the path away

from the ’real’ obstacles.

To handle with the uncertainties of the environment, the optimization is carried out

within the certain horizon, called as ’planning horizon’ [23]. The various cost func-

tions set within this planning horizon decided how the robot handled the constraints of

the tasks. In [4, 50], several cost functions had been proposed and studied where the

collisions are considered along with the entrapment escape capability. One of the cost

functions cooperated the high-level abstracted global information to guide the robot(s)

through the cluttered environment. In [27, 28, 45], hard safety constraint was consid-

ered as the priority. The backup route and corner scenario had been considered seriously

as the robot was guided to maneuver to gain more horizons behind the corners.

10

The assignment of the tasks or waypoints was also considered as the constraints

in [51, 18, 3]. For applications of autonomous Unmanned Aerial Vehicles (Quadrotor

UAVs), first illustrated in [32], many aspects have been studied for efficient path and

trajectory generation [9, 44]. How to define the efficiency, like energy consumption

or risk minimization, both high depend on the planned path since this determines the

flight fuel cost and risk exposure. This makes the path planning highly coupled with

the objectives. Moreover, in [15, 16], the energy consumption models were under the

wind disturbance modelled in MIQP which considered the trade-off between the time

and energy consumption.

One advantage of the mathematical programming is that after formulating the prob-

lem with proper constraints, the mathematical models could be solved accordingly using

the respective solvers and benefit from it if the model is suitable. For linear program-

ming, there exists the open source solver like the GLPK [34], also there are many oth-

ers could deal with nonlinear programming as well such as CPLEX [7], Gurobi [19],

and COPT, etc. Though using the MP method for multiple vehicle motion planning

problem could result in the large number of decision variables and constraints, which

directly affect the solution time and the solutions are not necessarily optimal globally.

However, with the improvement of the solver techniques and some appropriate modi-

fications, the mathematical programming framework could be applied for wider range

of MVMP problem is anticipated. The generality of the mathematical programming

enables the framework to copy with various time and space discretization for different

resolutions and also it can modelling the non-convex area uniformly where in [47], the

multiple vehicles’ collision avoidance were modelled as the convex velocity space se-

lection for the optimization and in [41], the vehicle’s nonlinear dynamics was estimated

by the piece-wise linearization for encoding the convexity. Under the MP framework,

the non-convexity could be handle both by problem modelling and solver algorithms

which provides more assistance in solving the issues.

11

Chapter 3

MILP Path Planning

3.1 Introduction

Mixed Integer Linear Programming (MILP) is the subset of the Linear Programming, it

means that some variables are constrained to be integer only. The standard formulation

is as follows:

min
x, y

z = c>x+d>y

s.t. Ax+By


≤

=

≥

b,

xmin ≤ x≤ xmax,

y integer.

(3.1)

Where in this formulation, x is a vector of bounded continuous real variables and y is

a vector of discrete integer variable. The purpose of this problem is to minimize z, which

depends linearly on x and y. A, B, b, c, d are problem parameterized matrices and

vectors, respectively. The reason of using the binary variables are that they could encode

the non-convexity [52]. These decisions are varied but similar in many scenarios. In

collision avoidance, the robot must either be ’left’ or ’right’ of the other robot. In Task

allocation scenario, the decision variables encodes the choices under certain practical

constraints, which is also the convex sub-problem. The MILP inherently retains the

complexity of the problem as they are N P-complete [14].

12

3.1.1 MILP cases

This section introduces some domains which MILP had been applied to and gives read-

ers with the understanding of its functions in the practical issues.

Logistics & Supply Chain

In this topic, only a small and simple problem, the assignment, would be discussed and

illustrated in the industry of the logistics. Let N denote the number of the factories and

also the number of the trucks for the transportation. We have a set C records the trans-

portation cost of assigning agent i to task j, denoted as ci j, i ∈ [1...N], j ∈ [1...N]. The

optimization objective is to minimize the transportation cost by appropriately assign the

task to the agents. Such problem could be solved by introducing a binary variable b for

the task assignment decision, let it be denoted as z. The whole assignment problem can

be formulated as follows:

min
z

N

∑
i=1

N

∑
j=1

ci j bi j

s.t.
N

∑
i=1

bi j = 1, ∀ j ∈ {1...N}

N

∑
j=1

bi j = 1, ∀i ∈ {1...N}

bi j ∈ {0,1}, ∀i, j,

(3.2)

where bi j is the binary decision variable to determine whether the agent i would be

assigned with task j. If bi j = 1, then the agent i would be assigned to task j. Otherwise,

the agent i would not be assigned task j. Moreover, only one task could be assigned

to the one agent and one agent could only accept one task, which represented in the

constraints as that the sum of each column and row of the b equals to one. Then the

objective function could be formulated as the sum of the element-wise multiplication

of the cost matrix C and decision matrix b. In this issue, the binary variable b functions

as the mask where the optimal entry (i,j) is masked in 1 and 0 for others. Moreover, the

resource constraint could also be added as the issue of transportation regulation as:

N

∑
i=1

N

∑
j=1

ri j bi j ≤ R, (3.3)

13

Figure 3.1: Layout solution in [5] where digits denote the different categories. The

optimized layout is L-T shaped structure with same category.

where ri j denotes the resource load to assign the agent i with task j, and R represents

the overall restriction for the resources. Since there would be many various regulations

and budget calculation in the domain of the logistics, the MILP can flexibly cooperate

the several constraints to generate the decisions.

Layout Problem

Layout problem widely covered the domain of construction, urban design, electronics

and chemistry, etc. A department layout problem is studied in [5] using MILP. Each

department is approximated using the rectangle with the given width and length for

certain category. The objective function is to minimize the total flow between various

departments where the departments are placed in the certain facility. The transportation

cost between each department is given and each department cannot overlap with each

other. Its final result is shown in Fig. 3.1 where each category stayed compact and the

occupancy ares of the all departments is efficient. fi j means the flow between depart-

ment i and j, xi,yi means the centroid of the i-th department in the x and y direction,

xi j,yi j denotes the distance between i-th and j-th department in the x and y direction.

Each department is defined by two points, up-right and bottom right vertex of the rect-

angle, as xh,yh and xl,yl . A and B are the dimension of the facility along the x and y

14

axis. The decision variable between two rectangles along two directions are defined as

zx
i j and zy

i j, these two variables mean the department i precedes department j in the x and

y directions, respectively. The formulation of the layout planning is as follows:

min
x,y,z ∑

i∈I
∑

j∈I, j 6=i
fi j(xi j + yi j)

s.t. xi j ≥ xi− x j ∀i, j, i 6= j (1)

xi j ≥ x j− xi ∀i, j, i 6= j (2)

yi j ≥ yi− y j ∀i, j, i 6= j (3)

yi j ≥ y j− yi ∀i, j, i 6= j (4)

xi =
xh

i +xl
i

2 ∀i (5)

yi =
yh

i +yl
i

2 ∀i (6)

xh
i ≤ xh

j +A(1− zx
i j) ∀i, j, i 6= j (7)

yh
i ≤ yh

j +B(1− zx
i j) ∀i, j, i 6= j (8)

zx
i j + zx

ji + zy
i j + zy

ji ≥ 1 ∀i, j, i 6= j (9)

zx
i j,z

y
i j ∈ {0,1} ∀i, j, i 6= j (10)

(3.4)

where the objective function in [5] intends to minimize the total costs in the facility

which is calculated by multiplying the total flow with the distance between each de-

partment and taking the sum over it. Constraints (1)-(4) define the pair-wise distance

along the x and y axis between each departmental centroid. Constraints (5)-(6) define

the centroid of each department as the average point of the bottom-left and up-right

rectangle points. Constraints (7)-(8) guarantee the precedence relationship exists be-

tween departments i and j along the x and y axis. The facility width and length here is

served as relaxed ’Big Number’. Constraints (9) ensures that at least in one direction

the departments are in precedence relationship so they won’t overlap with each other

and constraint (10) defines the binary decision variables. The binary variable zi j en-

codes the layout direction and precedence relationship between each component and

the arrangement is optimized according to the flow cost.

3.1.2 Solutions to the MILPs

As illustrated in [40], there is no certain requirement for the deep understanding in

the MILP solution algorithms. Once the problem is formulated in the MILP, it is

15

readily solved as many commercial packages like CPLEX [7] or open source project

like GLPK [34] are already on the shelf. Mathematical programming languages like

AMPL [17] can also abstract the complicated formulations into the easier language

using specific syntax.

Branch and Bound

The Branch and Bound algorithm has been adopted in many solvers like CPLEX,

Gurobi and COPT [7, 19]. Firstly, the integer constraints are removed as the formu-

lation is relaxed to the LP problem. Then the LP is solved, if the results satisfy the

original integer requirements, then terminate. If not, the branch operation is introduced

as certain integer value would be selected, then in each direction it generates new sub-

problem. Thus, the solving structure is tree-like, introduced with the node description

for the tree nodes. A node called ’incumbent’ means the current best solution for the

MILP is within this node during the solving process. A node called ’fathomed’ means

the node is no longer need exploring by the solver. Such happened either this branch

has no solution or it does have but the corresponding objective value is worse than that

of the ’incumbent’ node did. The search terminates when all the branches are evaluated.

In general, the branch-and-bound algorithm cannot guaranteed to search the entire solu-

tion space which is consisted with its N P-complete property. However, with the help

of appropriate choice of the heuristic, the globally optimal solution could be found.

Heuristic

Currently, there are various algorithms based on heuristic methods perform well on the

optimization problems. The dominated ones including simulated annealing [37] and

genetic algorithms [43]. The random search methodology reduces the susceptibility of

the solver to ’fall’ in local minima. The Heuristic methods are persuasive currently as

they are useful in solving large scale optimization problems as the computation capacity

surges in the modern age.

16

Figure 3.2: Example two-dimensional scenario for multiple vehicles path planning

problem where each vehicle is assigned with the waypoint area to reach .

3.2 Problem Statement

This section give the illustration of the the problem statement for the quadrotor case.

As quadrotor can generate constant force perpendicularly, thus it has capability to hover

in the air. The problem can transform to 2D quite easily. To translate in the plane, the

quadrotor uses the force difference generated by each paired rotors for the movement.

Because the rotor speed, which is positively proportional to the force generated, can

be easily controlled by the Electronic Speed Control (ESC), the quadrotor platform can

respond omni-directionally in the 2D plane. The example scenario is shown in Fig. 3.2.

There are several problems can be solved for this scenario:

• Each robot was assigned with the specific destination target, such as robot A was

assigned to reach Waypoint 1 for finish the task. The assignment itself can also

formulate as the MILP problem to solve, though in this paper it is not studied as

all the assigned way-points are explicitly given to each robot.

• Collision Avoidance During the movement to the Waypoint, each robot should

not collide with each other, thus the safety zone around the agent should be esti-

mated.

17

• Obstacle Avoidance When the robot moves in the environment with the obsta-

cles, it must not drive into the obstacles, thus the safe distances between robots

and obstacles should be remained.

• For each robot, there might be more than one way-points to visit. The order of

the visit is not assigned which is instead generated by the optimization process.

On the other hand, the Waypoint assignment could also be automated optimized

without pre-allocated for the minimum mission completion time.

• The whole movement could happen under the exterior or interior disturbance,

which means the uncertainty could occur. Such as the exterior wind disturbance

can exerted in the environment.

Section 3.5 develops the model for solving collision and obstacle avoidance. Sec-

tion 3.6 develops the model for handling the Waypoints under various scenarios. Some

exterior disturbances such as wind uncertainty is also added to test the algorithm’s ro-

bustness.

3.3 Notations for Problem Formulation

This section provides the notations that would be used to formulate the problem into

MILP.

s vehicle state

u control input

T time steps

Nv number of velocity approximation constraints

Nu number of control input approximation constraints

No number of obstacle approximation constraints

D large number for logical constraints for collision avoidance

H large number for logical constraints for obstacle avoidance

M large number for logical constraints for waypoints handling

Table 3.1: Notations used in MILP formulation

18

3.4 Vehicle Dynamics

In the planning, the dynamics should be considered for various vehicles as the generated

path should be feasible to some extend. The planning result of Fig. 3.3 (b) represents

a much more feasible path. In reality, the dynamics for any type of aerial vehicle are

typically non-linear, to capture the non-convexity of the original dynamics, the approx-

imation should be adopted as either linear or piece-wise linear in order to include them

into the MILP format.

-10 -5 0 5 10

x(m)

-10

-8

-6

-4

-2

0

2

4

6

8

10

y
(m

)

start

terminal

waypoint

((a)) Planning without considering dynamics

-10 -5 0 5 10

x(m)

-10

-8

-6

-4

-2

0

2

4

6

8

10

y
(m

)

start

terminal

waypoint

((b)) Planning considering dynamics

Figure 3.3: Example path planning results with and without considering vehicle dy-

namics

3.4.1 State Equations

The state equations used in the MILP are linearized and discretized model of the original

dynamics. Let (xt ,yt) denote the position of the vehicle at the time-step t and (ẋt , ẏt) as

its velocity, the state vector at time-step t can be formed as st = (xt ,yt , ẋt , ẏt)
>. Each

vehicle’s control forces is assumed as ut = (ux,uy)
> under certain input magnitude

limits. So the state equation can be written as:

st+1 = Ast +But , (3.5)

or

19


x

y

vx

vy


k+1

=


1 0 4t 0

0 1 0 4t

0 0 1 0

0 0 0 1




x

y

vx

vy


k

+


(4t)2/2 0

0 (4t)2/2

4t 0

0 4t


ux

uy


k

(3.6)

where A and B are the discretized system matices. In this case, the initial condition

is specified as s0 = sinit where sinit is the initial state of the vehicle.

3.4.2 Velocity and Control Input Constraints

The limitations should be put into the velocity and acceleration for encoding the vehicle

capabilities into the MILP form. The maximum speed in the x-y plane are denoted as

Vmax. Though such constraint can not be adde in the MILP directly, the circle can be

approximated by N-sided polygons, as displayed in the Fig. 3.4.

Figure 3.4: The velocity circle is approximated using 8-sided polygon. (a) The overes-

timated case as some velocities are infeasible. (b) The underestimated case where some

feasible velocities is not encoded.

The resulting 2D velocity constraints are:

∀n ∈ [1 ... Nv]

cos(
2πn
Nv

)vx + sin(
2πn
Nv

)vy ≤Vmax,
(3.7)

20

where the M denotes the number of the polygon sides for the approximation. How-

ever, such linearization results in the case that some unfeasible velocities are involved [41].

Such overestimated case is solved as we substitute the Vmax with V
′
max where

V
′
max = cos(

π

Nv
)Vmax,

thus Eqn. 3.7 can be rewritten as:

∀n ∈ [1 ... Nv]

cos(
2πn
Nv

)vx + sin(
2πn
Nv

)vy ≤ cos(
π

Nv
)Vmax,

(3.8)

Similarly, the control input with limit Umax can be written as follows:

∀n ∈ [1 ... Nu]

cos(
2πn
Nu

)ux + sin(
2πn
Nu

)uy ≤ cos(
π

Nu
)Umax.

(3.9)

3.5 Collision and Obstacle Avoidance

3.5.1 Collision Avoidance

Collision avoidance between each robot is enforced using the constraint containing the

safe distance. Let r denote the minimum allowed distance for safety, the constraints for

collision avoidance are:

∀t ∈ [1 ... T] ∀p,q | q > p

xt p− xtq ≥ r−Dct pq1

and xtq− xt p ≥ r−Dct pq2

and yt p− ytq ≥ r−Dct pq3

and ytq− yt p ≥ r−Dct pq4

and
4

∑
k=1

ct pqk ≤ 3.

(3.10)

where ct pqk is the element of the set of the decision variables, whose value is 0 or

1 (binary). D is a positive number that is much larger than any value of the position

or velocity in the scenario, often referred as ’Big D’, although in many other papers

such parameter is called as ’Big M’ [13] or ’Big R’ [41]. It is clearly that when the

21

ct pqk equals to 1, the k-th constraint is relaxed. It means in the k-th direction, there’s

no distance requirement. However, at least in one direction the safe distance should be

activated which means the ct pqk equals to 0. Such constraint reflects on the sum of the

set of the variable ct pqk that should satisfy ∑
K
k=1 ct pqk ≤ K−1. In the x-y plane, we can

simplify the K to 4 which indicates two directions in x and y axis, respectively.

3.5.2 Obstacle Avoidance

Similar to [13], the obstacle in this paper is modelled as the circle. To encode the circle

into MILP, the same approximation for the overestimated case in Sec. 3.4.2 can be

adopted. Thus, the obstacle is modelled as follows defined by a set of No inequalities:

O = {(x,y)|cos(
2πn
No

)(x− px) +sin(
2πn
No

)(y− py)≤ Ro,

∀n ∈ [1 ... No].},
(3.11)

where (px, py) denotes the coordinate of the obstacle centroid, Ro denotes the radius

of the obstacle. To encode the obstacle avoidance into the MILP, it must be converted

to an equivalent set of linear inequalities. For (xt ,yt) represents the vehicle’s position at

time-step t, the avoidance condition should be expressed as (xt ,yt) /∈ O . Similar to the

collision avoidance, the obstacle avoidance constraints can be written as follows:

∀n ∈ [1 ... No]

(xt− px)cos(
2πn
No

)+(yt− py)sin(
2πn
No

)> Ro−Hbn,

and
No

∑
n=1

bn ≤ No−1.

(3.12)

where decision binary variable bi, ∀i ∈ [1 ... N] is introduced to indicate the activa-

tion of the constraint. H is here is a positive sufficiently large number as well, if the bi

equals to 1, then the i-th constraint is relaxed. However, to avoid the obstacle, at least

one constraint should be satisfied, as the sum of all the binary variable bi, ∀i ∈ [1 ... N]

should less or equal to N-1, where N denotes the number of the approximation polygon

sides.

22

3.6 Waypoint Handling

This section, the Waypoint handling would be introduced and formulated into the MILP.

The number of the waypoints should greater or equal to 1, when the number equals to

1, the waypoint can be treated as the robot’s terminal point. We continue letting (px, py)

denote the coordinate of the robot in the 2D plane. The coordinate of the k-th waypoint

is denotes as (W k
x ,W

k
y). The constraints for Waypoint visiting can be written as:

∀i ∈ [1 ... T] ∀k ∈ [1 ...W]

px−W k
x ≤ M(1− tik)

and px−W k
x ≥ − M(1− tik)

and py−W k
y ≤ M(1− tik)

and py−W k
y ≥ − M(1− tik)

and
T

∑
i=1

tik = 1.

(3.13)

∀i ∈ [1 ... T] ∀k ∈ [1 ...W]

T

∑
i=1

tik = 1. (3.14)

Similar to Eq. 3.10 3.12, the constraints require that the vehicle visits each Waypoint

exact once using the binary decision variable tik,∀i ∈ [1 ... T] ∀k ∈ [1 ... W]. The sum

of the variable should equals to 1 means during the whole planning time horizon, only

once the constraints for k-th waypoint visit would be activated.

3.7 The Objective Function

This section introduces how to use the MILP constraints to include the finishing time

to the formulation. We want to solve the vehicle p achieving the final point before the

maximum time-step T. First, let us introduce the binary decision variable fi to indicate

the finish state of each time step. When fi = 1 means the vehicle achieves the final

position, and 0 otherwise. The MILP constraints for final point reaching is as follows:

23

∀i ∈ [1 ... T]

pxi− x f ≤ R(1− fi)

and pxi− x f ≥ − R(1− fi)

and pyi− y f ≤ R(1− fi)

and pyi− y f ≥ − R(1− fi)

and

(3.15)

T

∑
i=1

fi = 1. (3.16)

where R is the same sufficiently large, positive number. It can been seen that if

fi = 1, Eqn. 3.15 forces the vehicle to equal to the final state. Eqn. 3.16 constraints that

the vehicle to the finish point at some time-step. Thus the minimum time solution for

the vehicle can be formulated as:

min
s,u,c,f

J =

T

∑
i=1

Ti fi (3.17)

where Ti is the actual time elapsed at step i. Eqn. 3.17 can also be extend to the

multiple vehicles scenario very easily. We can modified the binary decision variable

fi into fip, as two-dimensional binary array where p indicates each vehicle. Eqn. 3.15,

Eqn. 3.16 and Eqn. 3.17 can be rewritten as follows, respectively:

∀p ∈ [1 ... N] ∀i ∈ [1 ... T]

xpi− x f
p ≤ R(1− fip)

and xpi− x f
p ≥ − R(1− fip)

and xpi− y f
p ≤ R(1− fip)

and xpi− y f
p ≥ − R(1− fip)

and

(3.18)

∀p ∈ [1 ... N]

T

∑
i=1

fip = 1. (3.19)

min
s,u,c,f

J =

N

∑
p=1

T

∑
i=1

Ti fip (3.20)

24

There’s need to mention that Eqn. 3.19 enforces the logic that each vehicle should

reach the final point before T, but does not enforce they to reach the destination at the

same time-step. Thus the objective can be formulation as minimize the total reach time

of all vehicle p. Unfortunately, according to [41], Eqn. 3.20 leads to an inefficient

formulation since there would be multiple solutions stops at each time step. Such prob-

lem can be remedied by adding the states and inputs as small input penalty to the cost

function.

min
s,u,c,f

J =

N

∑
p=1

T

∑
i=1
{Ti fip + ε(|uxip|+ |uyip|)} (3.21)

where ε is a positive number and small enough. The whole problem is to solve

Eqn. 3.21 subject to the constraints in Eqns. (3.10), (3.12), (3.13), (3.15) and (3.16).

3.8 Simulation and Results

3.8.1 Implementation Details

The problem is optimized by the MILP solver, based on branch-and-bound algorithm,

implemented in the GLPK [34]. The formulation of the problem is illustrated in AMPL [17]

where GLPK accepts to interpret the subset of the AMPL. The single vehicle planning

problem is demonstrated in the Appendix. 7.2, the implementation in AMPL is straight

forward as long as the parameters and variables are defined clearly at the first place.

The solver should also be provided with the data file to instantiates the model file, this

task is achieved by the MATLAB file as the user define the environment and respective

constraints. The example of the single vehicle planning data generation script is shown

in Appendix. 7.1. After the solver completed the optimization, the script is written to

analyse the output. The variables, such as planned positions, velocities, are extracted to

the MATLAB space and then the plotting utilities can been used for figures. The simu-

lation is based on the Windows PC equipped with 8xCPU@2.6GHz and 16G RAM.

3.8.2 Example: Single Vehicle with Obstacle Avoidance

In this example, the single vehicle with capacity for obstacle avoidance is presented

under different time differences. The uniformly gridding methods is used as dt = 1s in

25

Fig. 3.5 and dt = 0.5s in Fig. 3.6. The global planning with fined time discretization is

shown in Fig. 3.7 and the vehicle’s state is illustrated in Fig. 3.8. This example mainly

shows the differences of adopting various dt values. The smaller the dt is, the finer of

the planned path, as a result, there would be less potential collisions between each path

vertex. The more efficient algorithm would be introduced in Sec. 3.9.

Figure 3.5: Planning result with dt = 1s. The first figure shows the planning result

within global horizon, the position of each planning time step is outside of the obstacle.

However, due to the poor uniformly gridding, the result might cross the obstacle. The

second figure shows the detailed of the planned waypoints.

26

Figure 3.6: Planning result with dt = 0.2s. With finer discrete time step, the path didn’t

collide with the obstacle, however, with the increase in the number of the planning

points, denoted in blue cross, the computation time also increased.

27

Figure 3.7: Planning result with fined time discretization as dt = 0.2s through narrow

corridor between two nearby obstacles.

0 1 2 3 4 5 6 7

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v
e
lo

c
it
y
 (

m
/s

)

Velocity

V
x

V
y

0 1 2 3 4 5 6 7

time (s)

0

1

2

3

4

5

6

7

8

p
o
s
it
io

n
 (

m
)

Position

P
x

P
y

Figure 3.8: The state, velocity and position, of the vehicle during the planning horizon.

The final magnitude of the velocity is not restrict to zero in this scenario.

28

3.8.3 Example: Multiple Vehicles with Collision Avoidance

In this example, multiple vehicles were assigned with final point to reach, respectively,

such as vehicle 1 should reach the Final 1 illustrated in the Fig. 3.9. Two different

approximations for the collision avoidance distance is adopted in this example. In

Eqn. 3.10, four directions are adopted in the the constraints. Actually, more constraints

could be put into the avoidance constraints like in Eqn. 3.12. The 8-side approximation

is also adopted for safe collision avoidance shown in the figure. Both snapshots of the

scenarios show the collisions are free under the appropriated modelling.

Figure 3.9: The multiple vehicles with collision avoidance both with four-side and

eight-sided approximation. Each vehicle’s position is out of the colored safety region

of other vehicles’ at each time step. This demonstrated that the safety region could be

flexible to the users’ definitions

29

3.8.4 Example: Single Vehicle with Waypoint Handling

This example demonstrates the single vehicle handling with multiple waypoints. In

Fig. 3.10, the optimizer generates the minimum-time path for the vehicle to visit all

the waypoints, the order of visit is not pre-assigned. Also, obstacle avoidance could be

cooperated, shown in Fig. 3.11.

0 5 10 15

time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

v
e
lo

c
it
y
 (

m
/s

)

Velocity

V
x

V
y

0 5 10 15

time (s)

0

1

2

3

4

5

6

7

8

9

p
o
s
it
io

n
 (

m
)

Position

P
x

P
y

Figure 3.10: Planning result for the vehicle to visit four separated waypoints. The initial

position of the vehicle is [0,0]>, initial velocity is [1,0]> as indicated by the black arrow.

The order of the visit is optimized by the solver instead of pre-assigning. Blue cross

denotes the position of each planning time step.

30

0 2 4 6 8

time (s)

-0.5

0

0.5

1

1.5

2

v
e

lo
c
it
y
 (

m
/s

)

Velocity

V
x

V
y

0 2 4 6 8

time (s)

0

1

2

3

4

5

6

7

p
o

s
it
io

n
 (

m
)

Position

P
x

P
y

Figure 3.11: Obstacles can be cooperated as well, with fined time dicretization. The

planning result is demonstrated with all the successful waypoints visited along with

collision-free path.

31

3.8.5 Example: Single Vehicle with Wind Disturbance

In this example, the exterior wind disturbance is added to the environment. With fined

time and appropriate horizon steps, the minimum-time path could be calculated by the

optimizer. The exterior disturbance like wind is treated as the exerted force applied in

the dynamics of the vehicle in MILP. In this setting, the wind disturbance is perfectly

known to the vehicle at each time step where the online model for handling the unknown

disturbance is studied in Chap. 4.

0 2 4 6 8 10

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

v
e
lo

c
it
y
 (

m
/s

)

Velocity

V
x

V
y

0 2 4 6 8 10

time (s)

0

1

2

3

4

5

6

7

p
o
s
it
io

n
 (

m
)

Position

P
x

P
y

Figure 3.12: Exterior disturbance like wind is Incorporated into the MILP. The wind

velocity is [0.5,−1]> denoted as blue arrows in the left side. With the perfect knowledge

of the disturbance, the vehicle reached the final target against wind and obstacles.

32

0 1 2 3 4 5 6

time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

v
e

lo
c
it
y
 (

m
/s

)

Velocity

V
x

V
y

0 1 2 3 4 5 6

time (s)

-1

0

1

2

3

4

5

6

7

8

9

p
o

s
it
io

n
 (

m
)

Position

P
x

P
y

Figure 3.13: Exterior disturbance like wind is Incorporated into the MILP. The wind

velocity is [2,−1]> denoted as blue arrows in the left side. With the perfect knowledge

of the disturbance, the vehicle reached the final target against wind and obstacles.

33

3.9 Iterative Refinement using MILP

This section would introduce the iterative techniques to conquer the drawbacks of the

global one-time MILP planning fashion. To achieve more robust outcomes, the dis-

cretized time steps need being quite small, resulting in exponentially increased decision

variables both for collision and obstacle avoidance, thus the solving time increased as

well [41]. As we shown in the Sec. 3.5, the critical factors for the finer path planning

is the finer time gridding or larger obstacle inflation. For each time step, the planner

needs to judge the collision situations for obstacles thus the total computation time is

proportional to the Np×No×NT where Np is the number of the collision check, it is

default as 4 here described in Sec. 3.5. There are few techniques [13] for reducing the

total computation time while maintaining the path safety. One way is to reduce the

time step and another is to increase the obstacle inflation for the exchange of decreasing

the number of uniform sample time gridding. Thus this section would introduce iter-

ative MILP methods for vehicle control problems. Inspired by [13], we firstly set the

objective function as minimize the whole control input as

J =

T−1

∑
k=0

(|uk
x|+ |uk

y|), (3.22)

where ux and uy are bounded as described in Sec. 3.4.

3.9.1 Iterative time selection algorithm for MILP path planning

It is obvious that the fewer avoidance checks during the path, the less time it would cost,

thus it is more advantageous. The iterative time step selection is the natural solution to

this thought. The idea is to first solve the MILP with no obstacle considered in the model

as shown in the first iteration of the Fig. 3.14, then the path is checked for the collisions.

If there are collision exists, the MILP would be augmented by adding the time steps to

each collided path where the time step selection happened. Then the augmented MILP

is solved and the resulting path is checked for the collisions, repeating the procedure

until a collision-free path is planned.

If there are no collisions, the algorithm would be terminated, otherwise, for each

collided path i, we compute the time interval [t i
1, t

i
2] where the trajectory is crossing the

obstacle. Then the augmented time step t i
new should be selected in [t i

1, t
i
2]. In this section,

34

we choose the average value of the interval as t i
new = (t i

1 + t i
2)/2. The whole procedure

for iterative time step selection is shown in Alg. 1.
Algorithm 1: The iterative MILP time selection algorithm

1 Formulate the MILP without obstacle consideration.

2 Solve the MILP for each obstacle avoidance.

3 Check the path collisions for each path interval.

4 while Collision exists do

5 For each collision i, calculate the time interval [t i
1, t

i
2].

6 Augment the MILP with newly selected time step t i
new between each

collision time interval. Solve the MILP to plan the new path.

7 Check the resulting path for collision.

8 end

Figure 3.14: The snapshots of each iteration for the iterative time selection MILP

method. The red polygons represents the obstacle approximation, the cross represents

the augmented time step selected. The start state: (xs,ys, ẋs, ẏs) = (0,0,0,1).

35

Figure 3.15: Illustration of the obstacle inflation.

3.9.2 Iterative obstacle inflation algorithm for MILP path planning

The another iterative MILP algorithm for obstacle avoidance is to increase the obstacle’s

buffer size d. The illustration of the obstacle expansion is shown in Fig. 3.15, the origin

radius of the obstacle is denoted as robs, the dotted line represents the overestimated

approximation to the obstacle. Here we define the inflation coefficient α ≥ 0, thus the

expanded radius defined as rexpanded = (1+α)robs and d = αrobs.

The whole procedure of the obstacle growing algorithm is list in Alg. 2. The first

step is the same as that of the time selection algorithm, without considering the obstacle

in the environment. The difference is that the method dealing with the collisions when

it happened. When the collision happened with the j-th obstacle, the algorithm would

expand the d by the certain increment value.
Algorithm 2: The iterative MILP obstacle inflation algorithm

1 Formulate the MILP without obstacle consideration according to the vehicle

control objectives.

2 Set obstacle buffer zone d j for each obstacle.

3 Solve the MILP for each obstacle avoidance with its respective buffer size.

4 Check the path collisions for each path interval.

5 while Collision exists do

6 For each collision i that happened with obstacle j, expand the j-th

obstacle’s buffer size.

7 Augment the MILP with newly expanded obstacle. Solve the MILP to plan

the new path.

8 Check the resulting path for collision.

9 end

36

However, the iterative growing obstacle method still got some problems in planning

the good quality path, as the expansion of the obstacles would take up much space in the

configuration space and the initial and terminal point might got engulfed by this expan-

sion. This method could be quite efficient for the dense uniformly time step gridding

while not that robust for too coarse time step initialization as the it might iteratively

cause the more invaluable obstacle growth.

Figure 3.16: The snapshots of each iteration for the iterative obstacle inflation MILP

method. The dotted red polygons represents the obstacle approximation with expansion,

the cross represents the augmented time step selected. The expansion coefficient equals

0.1. The start state: (xs,ys, ẋs, ẏs) = (0,0,0,1).

The comprehensive comparison between the global one-time and iterative MILP

planning methods are demonstrated in Fig. 3.17. The four figures show the efficiency

and differences between various methods. The growing obstacle can also be combined

with the uniform gridding, thus, with the appropriate choice of the method combination,

the suitable computation time would be achieved.

37

Figure 3.17: The comparison of the MILP methods with minimum control input ob-

jective. (a) the result with time step equals to 2s. The path intersected in one inter-

val with the obstacle. (b) the result with time step equals to 1s. The finer gridding

makes the path avoid the collision while more avoidance time steps are chosen, thus

the computation time arises. (c) the result of iterative time step selection algorithm, the

time step is reduced significantly compared to (b). (d) the result of iterative growing

obstacle with time step selection algorithm, the number of the timing for avoidance

check reduces to four and the path is collision-free. The initial and terminal configura-

tion are all the same as (xs,ys, ẋs, ẏs) = (0,0,0,1) and the terminal region is restrict to

(xmin
f ,ymin

f ,xmax
f ,ymax

f) = (8,8,9,9)

38

Figure 3.18: The binary search for the optimal minimum time with the tolerance ε

3.9.3 Iterative MILP with minimum time objective

This section the minimum time path planning method is presented. Without uniformly

time step gridding, the iterative method can be used to search for the minimum time t∗.

The search strategy is the binary search for the optimal minimum time. The illustration

of the binary search is shown in Fig. 3.18. We first set the lower and higher bounds for

the time as tlb and tub, respectively. Then, we use the MILP to formulate the feasible

problem instead of the optimization problem. The initialization of the tlb and tub should

be appropriated where tlb should be sufficiently small number and tub cannot be too large

as the computation time for the feasibility should also be considered. Then the average

value tm is calculated as tm = (tlb + tub)/2, and the MILP feasibility problem is solved

using the tm. If the the problem can be solved using tm, then the optimal minimum

time must lie in the time interval (tlb, tm], otherwise, it is lied in the (tm, tub]. Then

the second average value of the feasible time interval is calculated for searching the

optimal minimal time with tolerance of ε whose value is sufficiently small for determine

the optimal finish time t∗ is within the time interval. The average value tM is used as

the final time value to validate the MILP feasibility, t1
m, t

2
m, ..., t

k
m is the sequence of the

iterative final times for the binary search algorithm. The thought of the binary search is

illustrated in Alg. 3. For the time interval (tL, tR], if the tM is infeasible for the MILP,

then we should search in the right-half time interval, otherwise, we search in the left-

half time interval. The iteration terminated when tR− tL < ε . After k iterations, the time

interval’s length is obviously equals to (tub− tlb)/2k.

We only discuss the iterative MILP minimum time algorithm here and obviously the

algorithm is quite suitable for solving the minimum time objective efficiently.

39

Algorithm 3: The iterative MILP for the minimum time algorithm

1 Formulate the MILP without objective function.

2 Set time boundaries as tL := tlb and tR := tub

3 Calculate the average of the feasible time interval as tM := (TL +TR)/2.

4 while (TR−TL)> ε do

5 if the path is feasible with the final time t f := tM then

6 Set tR := tM.

7 else

8 Set tL := tM.

9 end

10 Set tM := (TL +TR)/2.

11 end

40

Chapter 4

Receding Horizon Control

4.1 Introduction

Recently, with the emergence with huge numbers of autonomous vehicles, the au-

tonomous navigation techniques are arising in the recent decades. Moreover, with the

appearance of the modern software middle-ware like ROS [48], along with high perfor-

mance computing units, the real-time planning is transformed to be much more robust

and demonstrated the adaptive capability to the various changing environments. To cope

with the uncertainty caused both in the interior and the exterior, such as plant modelling

error and disturbance, etc., more sophisticated control architectures should be used in-

stead of using the global method proposed in the Chap. 3 as the path is planning in once.

Though the iterative method is proposed to reduce the number of points where collision

check is needed, such technique still can barely handle with the large and complex sta-

tionary or dynamic environments under the burden of the high computation demands.

One alternative way to overcome such problem is to adopt the Receding Horizon Con-

trol(RHC) [23]. Though RHC can handle the real-time planning more sophisticated,

there are still several problems remained and many papers are published to overcome

them. The idea of the safe guaranteed planner is proposed, in [45], the safe basis states

and backup rescue path is paralleled planned. In [28], the corner scenario is considered

as the environment dynamics behind the corner is unpredictable within the certain hori-

zons, thus certain maneuvers are required which is considered within the RHC-based

planner.

The components and procedure of Receding Horizon Control is introduced in the

41

next section. Mixed Integer Linear Programming (MILP) is still used for the optimiza-

tion as it is suitable for encoding the logical constraints. Thus the MILP is used in the

RHC framework to relieve the computation burdens and to incorporate feedback. The

path planned by the MILP ought to guided by the objective function as pointing to the

terminal point but there’s no necessary requirement to reach it, since the restriction of

the size of the horizon. Multiple objective penalty terms would be discussed as the

critical part of the RHC path planner.

4.2 Receding Horizon Path Planner Overview

The Receding Horizon Control, also called Model Predictive Control, designs the input

sequence that optimizes the plant’s output in the certain horizons. The approach to

ensure that the successively planned path can reach the goal is to minimize the estimate

of the cost to go from the plan’s ending. Thus, how to find the accurate estimation for

the cost to go is a critical factor without planning the path all the way to the goal point.

This section investigate various cost-to-go functions based on various estimations.

Figure 4.1: Illustration for Receding Horizon Control strategy with perception range of

1.5m and planning horizon with 0.8s. The obstacles are inflated accordingly and the

grey parts are unsensed by the vehicle.

42

The illustration of the RHC is demonstrated in Fig. 4.1 where several horizons are

introduced for several purposes. The red area represents the perception area, thus the

observed obstacles are label in red with inflation processed. The blue squared are rep-

resents the planning Horizon where certain cost function is optimized and the execution

horizon is that only one step of the control sequence would be executed. The overall

procedure of RHC to be employed is as follows:

1. The path planning formulation in Chap. 3 is used to optimize, starting from cur-

rent state scur and current time t to stop at the time t +H at target state star. H is

the prediction horizon.

2. Only implement the first step of the control sequence resulting from the optimizer.

3. Repeat until reach the goal.

4.3 Fixed Horizon Minimum Time Controller

The fixed horizon controller was actually presented in [41], and implemented in Chap. 3.

We show that such planning strategy actually can fit into the RHC framework where a

large fixed horizon H is adopted and the goal is guaranteed to be reach within this

horizon. Recap on the minimization objective stated in Sec. 3.7:

min
u(·)

φ1(bf, t) =
H

∑
i=1

b f ,iti,

s.t. Eqn. (3.15) (Goal achievement)

Eqn. (3.16)

Eqn. (3.10) (Collision avoidance)

Eqn. (3.12) (Obstacle avoidance)

Eqn. (3.6) (Discretized dynamics)

(4.1)

where H denotes the size of the horizon, and there exists H binary decision variables

b f ∈ {0,1} deciding at which time step the goal is reached. The optimization should be

constrained by various planning requirements listed in Eqn. 4.1.

Such formulation optimizes the minimum arrival-time path to the goal. However,

experiment shows that the computation burden grows quickly as the path length and en-

vironment complexity increases. Thus, to handle this problem, RHC with small horizon

43

H is adopted and some modifications would also be introduced to handle the additional

problems by using such solution.

4.4 Simple Goal Cost Estimation

As we use the small horizon, the goal cannot be reached within the planning horizon,

thus the cost function has to add the terminal penalty as the guidance. Before we dis-

cuss the cost function, the obstacle inflation is explained as follows. Illustrated in the

Fig. 4.2, if the width of the rectangle obstacle is smaller compared to the discretized

step length during the planning, the operation of the inflation is required for the vehicle

safety. Such scenario happens in [41] while the thin obstacle is appeared in the envi-

ronment. The inflation scheme is little different from that demonstrated in the Sec. 3.9

where the collision is allowed in the iterative algorithm.

Figure 4.2: Thin obstacle might be ’override’ by the path during the planning due to

the large time difference. Blue line represents the magnitude of the travel length in one

time step for the vehicle.

Here, square obstacles are adopted in the environment and its inflation is illustrated

in Fig. 4.3 where the cutting corner scenario is analyzed for deciding the inflation length

d. The extreme situation is that the path cut the corner with 45-degree attack angle in

one time step with the length of v · dt where the path indeed touch the real obstacle’s

corner. As a result, the inflation length d should at least taking care of this extreme situ-

ation as its minimum value should equal to
v ·dt
2
√

2
. Such technique can also be extended

into three dimension very straightforward as illustrated in [28].

As a result, the buffer area of the obstacle is allowed to cut in by the planned path,

such happened as shown in Fig. 4.4 (a) (d) and Fig. 4.5 (a) (d) as the snapshots of

44

Figure 4.3: Obstacle has to inflate in each corner for avoiding the path result cutting

into the corner. Blue line represents the magnitude of the travel length in one time step

for the vehicle. Red dotted arrow denotes the inflation of the squared obstacle.

the whole planning. The grey label obstacles are undetected one by the vehicle where

the lighter area denotes the inflation of the obstacle decided by the maximum vehicle

speed and time difference dt. The red area denotes the perception area of the vehicle

and the reddish rectangles are feed into the MILP as obstacles during the planning

where the inflation process would prevent the path from colliding with the real obstacle

configuration spaces.

MILP path planning is repeatedly applied within the time horizon H as this time

window is sliding towards the goal. The optimizer would generate the sequence of

control inputs at the time step k to the vehicle as {u(k+ i) ∈ R2 : i = 0,1, ...,H − 1}

which gives the future states as {x(k+ i)∈R2 : i = 0,1, ...,H}. Only the first step of the

plan is executed in this section. Similar to [4], the cost function is the terminal penalty

term as follows:

min
u(·)

φ2(x(k+H)) = `b(xgoal−x(k+H)), (4.2)

where `b(·) denotes the 1-norm of the distance form the planned path’s end to the

goal. The constraints are also added as same as the Eqn. 4.1. According to [4], this

choice of the terminal penalty can prevent the vehicle from reaching the goal when this

45

approximation doesn’t reflect the real executable path. There are two scenarios, one

is the line connecting the path’s ending point to the goal is penetrating the obstacle as

illustrated in Fig. 4.2, another is when the vehicle fell into the concave obstacle, only

with the guidance of the terminal penalty, the vehicle would got trapped in this ’local

minima’. Such behavior is quite similar to that when the potential field is adopted for

the navigation.

The simulation results are shown in Fig. 4.4 and Fig. 4.5 with detection range of

1.5m and 2m, respectively. The planning horizon is 5 time steps that is 1s with dt

equals to 0.2s. The whole computational time for the planning is reduced using the

online fashion since only the surrounding obstacles are considered for MILP. More

sophisticated planner would demonstrate in the next section to overcome the concave

obstacles with the incorporation of the abstraction of the global information.

4.5 Modified Cost Point Estimation and RHC

As described in Sec. 1.1, motion planning problem is proved to be N P-hard. There

remains many well-known techniques to be applied in such problems, such as Proba-

bilistic Road Maps [24], Rapidly-exploring Random Trees [30] and Cell Decomposi-

tion methods [50]. All of these techniques are aimed to reduce the dimensionality of the

problem by sampling the possible control actions. However, most of these results are

not optimal though many iterative algorithms have been proposed to prove that it can

reach asymptotically optimal under certain constraints. Thus, abstracted global infor-

mation should be incorporate when the planning phase is conducting to avoid the local

minima stated in the former section. As a result, similar to [27, 28], the planning part

consists of cost estimation and a path planning phase.

The resolution of the control architecture is shown in Fig. 4.6. Similar to that in

Chap. 4, within the planning horizon H, the MILP optimized according to the vehicle

dynamics for H steps. This cost estimates the time to reach the goal from the cost point

xvis, whose cost-to-go is abstracted previously. This control architecture includes two

different levels of resolutions which handles different levels’ challenges and exploits

the planning problem’s structure. On the global sense, which can also referred as long

time-scale, a successful controller only need to decide which corridor to go through

46

Figure 4.4: The snapshots of the planning scenarios using RHC while the detection

range is 1.5m. (a) The snapshot when time elapsed is 1.4 s. (b) The snapshot when time

elapsed is 2.6s. (c) The snapshot when time elapsed is 3.8s. Due to the restriction of

the detection range, not many obstacles are detected in the relatively cluttered area. (d)

The snapshot when time elapsed is 4.8s.

47

Figure 4.5: The snapshots of the planning scenarios using RHC while the detection

range is 2m. (a) The snapshot when time elapsed is 1.4 s. (b) The snapshot when time

elapsed is 2.8s. (c) The snapshot when time elapsed is 4.2s. With the increase in the

detection range, more area is included for the MILP optimization. (d) The snapshot

when time elapsed is 4.8s.

48

Figure 4.6: Resolution levels for modified RHC planner

or which obstacle to passage by under the objectives for shortest-distance or minimum

time requirements. On a short time-scale, which is also refer to local sense, a successful

controller should plan the kinodynamically suitable path for the vehicle to deal with the

nearby obstacles. These various resolution levels of RHC make the planner more robust

and adjustable to the environment.

According to the modified RHC strategy, the modified obejctive can be given as

follows:

min
u(·)

φ3(x(k+H)) = min
u(·)

`b(xvis−x(k+H))

vmax
+Cvis, (4.3)

where Cvis denotes the estimated cost from xvis to the goal which could be re-

estimated very quickly if the environment is changing.

4.5.1 Cost Map

To build up the cost map which includes the set of cost estimate points, the environment

needs abstracted. This section, the 2D obstacle is considered for building up the cost

map. The corner points of the inflated rectangles, along with the start the goal points

49

Figure 4.7: Visibility graph

are selected for being the estimation vertices.

The Visibility Graph is built as the first step for the coarse cost map computation

in an obstacle field. This is a good approximation because of its fast computation and

the straight-line estimation without considering the dynamics which can be easily rerun

under the changing environment. Fig. 4.7 shows the connectivity of the estimate points

when the obstacles are appeared in the environment, both start and goal points are con-

nected into this graph. Each edge should not collide with the obstacles as each vertex is

’visible’ to each other. Such result can easily be applied into the shortest-path algorithm

for the cost estimation for each visibility point xvis.

The shortest path is planned using the goal point sourced Dijkstra’s algorithm, as

a result, we can find out the shortest path from the goal to each vertex in the visibility

graph. The coarse shortest distance path is the one with goal and start point as two

terminals. Fig. 4.8 shows the shortest path extracted from the visibility graph which is

sourced from the goal point.

50

Figure 4.8: Shortest path sourced from the goal to the start point

4.5.2 Example: Local minima environment

With the help of the long-time scale estimation, the visibility estimation constraint en-

sures that the length between the planning horizon’s end to the visibility point is the

doable path. Also, the vehicle whould not fall into the entrapment because the shortest

path guaranteed that the guidance path would not got ’trapped’ in the local minima area.

This can be proved by the contradiction: if the shortest path falls into the entrapment,

then the additional effort would be made to escape from it, thus, such path is not the

shortest. This section provides the efficiency for the vehicle to avoid the entrapment.

Implementation details

The problem is optimized by the MILP solver, based on branch-and-bound algorithm,

implemented in the CPLEX [7]. The formulation of the problem is illustrated in AMPL [17].

The example of the single vehicle planning Receding Horizon configuration and data

generation script are shown in Appendix. 7.3. After the solver completed the opti-

mization, the script is written to analyse the output. The variables, such as planned

51

0 2 4 6 8 10 12
-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Disturbance during the process

disturbance
x

disturbance
y

Figure 4.9: Disturbance of the whole process

positions, velocities, are extracted to the MATLAB space and then the plotting utili-

ties can been used for figures. The simulation is based on the Windows PC equipped

with 8xCPU@2.6GHz and 16G RAM. Due to the restrictions of the variables size of the

demo version of the AMPL, only 500 variables are available for the whole model. Thus,

the entrapment scenario is given with large time difference dt and small time step for

shrinking down the size of the decision variables. The exterior disturbance generated

in the x, y axis are demonstrated in the Fig. 4.9, repectively. The disturbance are bound

around the zero with margins of 0.1∗umax which shows in the Appendix. The multiple

planning results using RHC is shown in Fig. 4.10. The dotted represents the inflation of

the obstacles which has been stated in Sec. 3.9 where the green zone represents the goal

area. All of these paths avoid the entrapment area with the guidance of the visibility

estimate points with the help of the global shortest path.

52

Figure 4.10: Various planning results don’t fall into the entrapment area. The dotted

rectangles represent the inflated obstacles according to the discrete time step of the

simulation for obstacle avoidance as the hard safety requirement. These obstacles form

an entrapment where vehicle would fall into using cost function shown in Sec. 4.4.

53

Chapter 5

Extended capabilities of MILP

5.1 Component of Trajectory Generation

This section will introduce how the finer trajectory can be generated after the coarse

path, yet constrained to the object’s dynamics, planned by the MILP using appropriate

approximation. The simulation shows that the higher-degree approximation of the dy-

namics can generate more feasible path for trajectory to fit. In [8], the three dimensional

dynamics of the mass-point model is presented and online trajectory generation is intro-

duced. In [9], the the convex partition is adopted for the safe region segmentation in the

environment, moreover, in [29], the safety corridor is also proposed for the quadrotor

UAVs as the piece-wise flight corridor is generated to guarantee the obstacle avoidance.

Quadrotor UAV platforms are widely been applied both in the indoor and outdoor

environment and various testbeds had been proposed in [21, 26, 36]. Multiple trajec-

tory generation techniques for the quadrotor were also proposed in the last few years,

such as minimum-snap [35] trajectory allows the micro quadrotor to fly in the highly

constrained indoor environment. In [22], the swarm trajectory generation algorithm is

also proposed for the safe distributed trajectories for the quadrotors.

Path planning, as the ’upstream’ for the trajectory planning, its quality is critical for

the final generated trajectory. The simulation and comparison is given in the Sec. 5.1.3

to show the fined approximated path is quite similar to the final generated trajectory

based on the quadrotor UAV. The first two parts briefly introduced the quadrotor kine-

matics and dynamics.

54

5.1.1 Quadrotor Kinematics

Commonly, the kinematics of a quadrotor could be illustrated using few frames. The

inertial frame, A , defined by a1, a2 and a3 with a3 pointing upward. The body frame,

B, defined by b1, b2 and b3 where actually b1 and b2 constructed the X-Y plane of the

quadrotor and b3 is perpendicular to this plane. The center of the body frame is attached

to the center of the mass, C, of the quadrotor, shown in Fig. 5.1.

Figure 5.1: Body frame bi and inertial frame ai for the quadrotor. The pair of the rotors

rotate in the same direction, ω2 and ω4 rotate counterclockwise while ω1 and ω3 rotate

clockwise

To represent the displacement of the quadrotor in the inertial frame, vector r is given

and defined as [xb,yb,zb]
>. In this work, to model the rotation of the quadrotor, though

there exist many conventions of using Euler angles, the Z-X-Y Euler angles is used to

model the rotation in the inertial frame. To get from B to A , first rotate about a3 by

the yaw angle, ψ , then rotate about a1 by the roll angle, φ and finally rotate about a2 by

the pitch angle, θ . The rotation matrices for these axes are shown below, respectively.

Rz(ψ) =


c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1

 . (5.1)

55

Rx(φ) =


1 0 0

0 c(φ) −s(φ)

0 s(φ) c(φ)

 , (5.2)

Ry(θ) =


c(θ) 0 s(θ)

0 1 0

−s(θ) 0 c(θ)

 , (5.3)

According to the Z-X-Y Euler angles sequence, the rotation matrix for transforming

coordinates from B to A is produced [39]:

A [R]B =


c(θ)c(ψ)− s(φ)s(ψ)s(θ) −c(φ)s(ψ) s(θ)c(ψ)+ s(φ)s(ψ)c(θ)

s(ψ)c(θ)+ c(ψ)s(φ)s(θ) c(φ)c(ψ) s(ψ)s(θ)− c(ψ)s(φ)c(θ)

−c(φ)s(θ) s(φ) c(φ)c(θ)

 ,

(5.4)

where c(·) and s(·) denotes cosine and sine function, respectively. Moreover, the

angular velocity of the robot in the body frame are given by p, q and r, these values are

related to the derivatives of the roll, pitch and yaw angles as follows:


p

q

r

=


c(θ) 0 −c(φ)s(θ)

0 1 s(φ)

s(θ) 0 c(φ)c(θ)




φ̇

θ̇

ψ̇

 . (5.5)

5.1.2 Quadrotor Dynamics

Newton’s Equations of Motion

Let r shown in Fig. 5.1 denote the position of the center of mass C in A . Then the

equation regarding the acceleration of the mass is illustrated as:

mr̈ =


0

0

−mg

+A [R]B


0

0

F1 +F2 +F3 +F4

 , (5.6)

56

where each rotor generates the force Fi in the b3 direction. The gravity is always

applied in the direction of −a3. Here we can define the first input u1 =
4

∑
i=1

Fi as the total

force produced by the rotors.

Euler’s Equations of Motion

According to the Fig. 5.1, the brief body frame with local coordinate is demonstrated in

Fig. 5.2. The torque τbi along three body axes are calculated as follows:

τb1 = d(f2− f4),

τb2 = d(f3− f1),

τb3 =−M1 +M2−M3 +M4,

(5.7)

Figure 5.2: Quadrotor body frame with propeller rotations

where d denotes the length of the identical quadrotor arm. fi denotes the force

generated by each propeller. The angular acceleration using the Euler equations is as

follows:

I


ṗ

q̇

ṙ

=


d(f2− f4)

d(f3− f1)

−M1 +M2−M3 +M4

−


p

q

r

×I


p

q

r

 , (5.8)

57

where I denotes the moment of inertia for the quadrotor and defined as:

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 .

The Eqn. 5.9 can be rewrite as:

I


ṗ

q̇

ṙ

=


0 d 0 −d

−d 0 d 0

γ −γ γ −γ




f1

f2

f3

f4

−


p

q

r

×I


p

q

r

 , (5.9)

where γ indicates the relationship of the lift and drag defined as γ = kM
kF

. Accrod-

ingly, we can define the second input u2 as:

u2 =


0 d 0 −d

−d 0 d 0

γ −γ γ −γ




f1

f2

f3

f4

 (5.10)

5.1.3 Trajectory generation based on MILP path planner

As the ’upstream’ of the trajectory planning module, the path planner module is critical

and [21, 36, 29, 22] proposed various solutions for incorporating these two modules

together for more accurate and agile outcome. Thanks to the capability of the quadrotor

that can hover in the air, more stable and safe planning control strategy can be adopted.

Fig. 5.3 demonstrates the components that our approach to generate the feasible and

minimum-snap trajectory. We first use the user input to build up the map with obstacles,

start and goal configurations. Then the path and trajectory planner are in cascade struc-

ture. Finally the desired trajectory is executed by the controller to output the control

input to the quadrotor. The dotted components below are adopted in the local planning

scheme such as MPC planner, where only the restrictively local information is given to

the vehicle. In this simulation, the global planning scheme is adopted.

58

Figure 5.3: Components of the quadrotor trajectory generation. Due to the limitation

of linear approximation of using MILP, the MILP path planning module could serve

as the fast, rough planning module in the trajectory planner while finer kinodynamical

trajectory is token care of in the succeed module.

For the low level control, Fig. 5.4 shows the position and attitude loops according

to [42]. The control problem is to determine the inputs u1,u2 to hover or to follow the

desired trajectory zdes. The position and orientation control is describe in [36] which

we won’t discuss much in this section.

Figure 5.4: The position and attitude control loops for the Quadrotor UAV

The simulations are intended to verify the validity of MILP path planning as a com-

ponent for further trajectory planner. Testing scenario is set to be similar to the woods

and the quadrotor is restricted in the yaw angle movement. The comparison of the two

results is shown in Fig. 5.5, the path with green crosses is MILP result with 10-side

approximation and 0.2s in dt for the quadrotor, the blue dotted path is the real trajectory

generated by the controller while the red dotted is the desired trajectory based on the

former planned MILP path.

The path is configured by the user input as the start point is [0,0,0]T , the goal with

[8,8,2]T . The wood-like obstacles are scattered in the environment. The velocity and

position information of the trajectory planner are provided in the Fig. 5.6. Moreover,

59

the snapshots of the quadrotor UAV (crazyflie) during the operation is shown in the

Fig. 5.7.

Figure 5.5: Executed Quadrotor UAV trajectory, in blue dotted line, is generated based

on the MILP path planning result, in green crossed line.

60

0 1 2 3 4 5

time [s]

0

1

2

x
d

o
t

[m
/s

]

0 1 2 3 4 5

time [s]

0

2

4

y
d

o
t

[m
/s

]

0 1 2 3 4 5

time [s]

0

0.5

1

z
d

o
t

[m
/s

]

0 1 2 3 4 5

time [s]

0

2

4

6

x
 [

m
]

0 1 2 3 4 5

time [s]

0

2

4

6

y
 [

m
]

0 1 2 3 4 5

time [s]

0

1

2

z
 [

m
]

Figure 5.6: Velocity and position of the generated trajectory

61

Figure 5.7: Snapshots of the crazyflie along the trajectory in the wood scenario. The

roll and pitch angles are shown during the process. The wood in the bottom right is

zoomed in in order to show the trajectory clearly.

62

5.2 Extension to the 3D applications

The 2D implementation of the MILP path planning can be easily extended to the 3D

application, inspired by [53], the city 3d climber application is introduced in this sec-

tion. The intuitive is simple and clear as the 2D planning can be transformed to the 3D

result using folding as illustrated in Fig. 5.8. The more constraints could be added to

the MILP formulation described in the Sec. 3. For example, the disjunction point along

the path between two surfaces should be specified, in Fig. 5.8, the separation point is

specified as [4,4]> in the 2D environment, yet the velocity should also be constrained

according to the vehicle’s dynamics constraints. We can also define multiple waypoints

for the vehicle to track and convert its path to the 3D results. The order of the waypoints

can be pre-assigned or optimized as described in 3.6. After we folded the 2D path along

the intersected line, the 3D results are demonstrated in the Fig. 5.9 and 5.10 in front and

rear views, respectively.

Figure 5.8: Planned Path in 2D with specific disjunction point (4,4)> on the predefined

wall and floor separation line.

63

Figure 5.9: Front view of the city climber path

Figure 5.10: Rear view of the city climber path

64

Chapter 6

Conclusion and Future work

A comprehensive study of the MILP path planning is conducted in this project. The

whole layout of the project is from the vanilla’s form to more sophisticated one. Ex-

tensive simulations are carried out to validate the proposed methods. Various planning

patterns are studies such as local planning, global planning, as well as the combination

of these two.

In Chap. 3, both global one-time and iterative MILP planner is studied under various

practical constraints. The usage of the binary decision variables in the MILP formula-

tion is the critical factor for successfully solving the MILP path planning problem and

also in other domains. The computation performance is improved by using the iteration

algorithm. However, in the cluttered environment, the number of the newly selected

time step would converge to that of the original MILP planner and the growing obstacle

method would result in the growing occupation of the free configuration space which

would finally lead to the planning failure.

In Chap. 4, an online planning fashion is studied with the introduce of the RHC

framework. By only considering the perception horizon, the computation burden would

drop a lot compared to the global planning fashion. However, the MILP objective func-

tion needs considering deliberately since the the area outside the perception horizon

is unknown to the vehicle. Several cost functions are also studied and implemented,

finally with the help of the abstracted global information, the vehicle could avoid the

entrapment in the environment.

In Chap. 5, the extended capabilities of the MILP is presented. The MILP planner

could serve as the rough approximation for the quadrotor UAV and provide the guidance

65

for the flight. Also, the two dimensional problem could successfully converted to the

three-dimensional application by carefully predefining the parameters.

The future extension of this project is wide but also challenged. To overcome the

error of the dynamics approximation by using the MILP, more complex formulation

needs proposing which would result in nonlinear and larger constraint variable space.

This would result in increasing computation time and relying on the advance of the

solver techniques. Moreover, the online navigation still cannot deal with the environ-

ment successfully sometimes. There are many scenarios such as corner, wall crash and

cross road need studying and the unified strategy needs proposing. MILP is suitable for

the quick modelling and estimation of the environment because of its preferred proper-

ties and existing techniques. Though many methods added many safety constraints in

the MILP to compensate its rough approximation of the model, to improve the accuracy

and handle various vehicle dynamics, the nonlinear programming needs studying in the

future for more robust results. Moreover, the 3D scenario for the planning is different

from that of the 2D ones, appropriated modelling needs studied and many constraints

also need extending to operate in the 3D environment.

66

REFERENCES

[1] Pramod Abichandani, Hande Benson, and Moshe Kam. Mathematical program-

ming approaches for multi-vehicle motion planning: Linear, nonlinear, and mixed

integer programming. Foundations and Trends in Robotics, 2(4):261–338, 2013.

[2] Pramod Abichandani, Gabriel Ford, Hande Y. Benson, and Moshe Kam. Mathe-

matical programming for multi-vehicle motion planning problems. In 2012 IEEE

International Conference on Robotics and Automation, pages 3315–3322, 2012.

[3] Senthil Hariharan Arul and Dinesh Manocha. Dcad: Decentralized collision

avoidance with dynamics constraints for agile quadrotor swarms. IEEE Robotics

and Automation Letters, 5(2):1191–1198, 2020.

[4] J. Bellingham, A. Richards, and J.P. How. Receding horizon control of au-

tonomous aerial vehicles. In Proceedings of the 2002 American Control Con-

ference (IEEE Cat. No.CH37301), volume 5, pages 3741–3746 vol.5, 2002.

[5] Yossi Bukchin and Michal Tzur. A new milp approach for the facility layout

design problem with rectangular and l/t shaped departments. 11th IMHRC Pro-

ceedings, 9, 2010.

[6] John F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,

MA, USA, 1988.

[7] IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business

Machines Corporation, 46(53):157, 2009.

[8] Kieran Culligan. Online trajectory planning for uavs using mixed integer linear

programming. 07 2007.

67

[9] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for uavs in clut-

tered environments. In 2015 IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 42–49, 2015.

[10] Spletzer J. Hsieh A. Derenick, J. An optimal approach to collaborative target

tracking with performance guarantees. In J Intell Robot Syst, pages 47–67, 2009.

[11] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-

merische mathematik, 1(1):269–271, 1959.

[12] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Practi-

cal search techniques in path planning for autonomous driving. In Proceedings of

the First International Symposium on Search Techniques in Artificial Intelligence

and Robotics (STAIR-08, 2008.

[13] M.G. Earl and R. D’Andrea. Iterative milp methods for vehicle-control problems.

IEEE Transactions on Robotics, 21(6):1158–1167, 2005.

[14] C. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and Ap-

plications. Oxford University Press, Inc., 1995.

[15] Yacef Fouad, Laid Degaa, and Mustapha Hamerlain. Energy-efficiency path plan-

ning for quadrotor uav under wind conditions. pages 1133–1138, 06 2020.

[16] Yacef Fouad, Nassim Rizoug, Omar Bouhali, and Mustapha Hamerlain. Opti-

mization of energy consumption for quadrotor uav. 09 2017.

[17] Robert Fourer, David M. Gay, and Brian W. Kernighan. Ampl: A mathematical

programing language. In Stein W. Wallace, editor, Algorithms and Model Formu-

lations in Mathematical Programming, pages 150–151, Berlin, Heidelberg, 1989.

Springer Berlin Heidelberg.

[18] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Sil-

ver, Leslie Pack Kaelbling, and TomÃ¡s Lozano-PÃ©rez. Integrated task and

motion planning. Annual Review of Control, Robotics, and Autonomous Systems,

4(1):265–293, 2021.

[19] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

68

[20] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuris-

tic determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, 1968.

[21] Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander, and Claire J. Tom-

lin. Precision flight control for a multi-vehicle quadrotor helicopter testbed. Con-

trol Engineering Practice, 19(9):1023–1036, 2011.

[22] Wolfgang Hönig, James A. Preiss, T. K. Satish Kumar, Gaurav S. Sukhatme, and

Nora Ayanian. Trajectory planning for quadrotor swarms. IEEE Transactions on

Robotics, 34(4):856–869, 2018.

[23] A. Jadbabaie, J. Primbs, and J. Hauser. Unconstrained receding horizon control

with no terminal cost. In Proceedings of the 2001 American Control Conference.

(Cat. No.01CH37148), volume 4, pages 3055–3060 vol.4, 2001.

[24] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Transactions on Robotics and Automation, 12(4):566–580, 1996.

[25] Dexter C. Kozen. Depth-First and Breadth-First Search, pages 19–24. Springer

New York, New York, NY, 1992.

[26] Vijay Kumar and Nathan Michael. Opportunities and challenges with au-

tonomous micro aerial vehicles. The International Journal of Robotics Research,

31(11):1279–1291, 2012.

[27] Y. Kuwata and J. How. Receding horizon implementation of milp for vehicle

guidance. In Proceedings of the 2005, American Control Conference, 2005., pages

2684–2685 vol. 4, 2005.

[28] Yoshiaki Kuwata. Real-time trajectory design for unmanned aerial vehicles using

receding horizon control. 12 2013.

[29] Shupeng Lai, Menglu Lan, and Ben M. Chen. Efficient safe corridor navigation

with jerk limited trajectory for quadrotors. In 2018 37th Chinese Control Confer-

ence (CCC), pages 10065–10070, 2018.

69

[30] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning.

Technical report, 1998.

[31] Steven M. LaValle. Planning Algorithms. Cambridge University Press, USA,

2006.

[32] J. Leishman. The breguet-richet quad-rotor helicopter of 1907. 2001.

[33] Lozano-Perez. Spatial planning: A configuration space approach. IEEE Transac-

tions on Computers, C-32(2):108–120, 1983.

[34] A. Makhorin. Glpk (gnu linear programming kit).

Available at http://www.gnu.org/software/glpk/glpk.html.

[35] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and con-

trol for quadrotors. In 2011 IEEE International Conference on Robotics and Au-

tomation, pages 2520–2525, 2011.

[36] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The grasp

multiple micro-uav testbed. IEEE Robotics Automation Magazine, 17(3):56–65,

2010.

[37] Panos M. Pardalos and Thelma D. Mavridou. Simulated annealingSimulated An-

nealing, pages 3591–3593. Springer US, Boston, MA, 2009.

[38] Scott Drew Pendleton, Hans Andersen, Xinxin Du, Xiaotong Shen, Malika Megh-

jani, You Hong Eng, Daniela Rus, and Marcelo H. Ang. Perception, planning,

control, and coordination for autonomous vehicles. Machines, 5(1), 2017.

[39] Caitlin Powers, Daniel Mellinger, and Vijay Kumar. Quadrotor Kinematics and

Dynamics, pages 307–328. Springer Netherlands, 2015.

[40] A. Richards and J. How. Mixed-integer programming for control. In Proceedings

of the 2005, American Control Conference, 2005., pages 2676–2683 vol. 4, 2005.

[41] A. Richards and J.P. How. Aircraft trajectory planning with collision avoidance

using mixed integer linear programming. In Proceedings of the 2002 American

Control Conference (IEEE Cat. No.CH37301), volume 3, pages 1936–1941 vol.3,

2002.

70

[42] Francesco Sabatino. Quadrotor control: modeling, nonlinearcontrol design, and

simulation. Master’s thesis, KTH, Automatic Control, 2015.

[43] Kumara Sastry, David Goldberg, and Graham Kendall. Genetic Algorithms, pages

97–125. Springer US, Boston, MA, 2005.

[44] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed in-

teger programming for multi-vehicle path planning. In 2001 European Control

Conference (ECC), pages 2603–2608, 2001.

[45] Tom Schouwenaars and Eric Feron. Safe receding horizon path planning for au-

tonomous vehicles. 01 2002.

[46] Tom Schouwenaars, Éric Féron, and Jonathan How. Safe receding horizon path

planning for autonomous vehicles. In Proceedings of the Annual Allerton Confer-

ence on Communication Control and Computing, volume 40, pages 295–304. The

University; 1998, 2002.

[47] Jamie Snape, Stephen J. Guy, Ming C. Lin, Dinesh Manocha, and Jur Van Den

Berg. Reciprocal collision avoidance and multi-agent navigation for video games.

In Multiagent Pathfinding - Papers from the 2012 AAAI Workshop, Technical Re-

port, volume WS-12-10, pages 49–52, December 2012.

[48] Stanford Artificial Intelligence Laboratory et al. Robotic operating system.

[49] Anthony Stentz. Optimal and efficient path planning for unknown and dynamic

environments. INTERNATIONAL JOURNAL OF ROBOTICS AND AUTOMA-

TION, 10:89–100, 1993.

[50] Ashleigh Swingler and Silvia Ferrari. A cell decomposition approach to coopera-

tive path planning and collision avoidance via disjunctive programming. In 49th

IEEE Conference on Decision and Control (CDC), pages 6329–6336, 2010.

[51] Ilknur Umay, Baris Fidan, and William Melek. An integrated task and motion

planning technique for multi-robot-systems. In 2019 IEEE International Sympo-

sium on Robotic and Sensors Environments (ROSE), pages 1–7, 2019.

71

[52] H. Paul Williams and Sally C. Brailsford. Computational Logic and Integer Pro-

gramming, page 249–281. Oxford University Press, Inc., USA, 1996.

[53] Ronggang Yue, Jizhong Xiao, Shaoping Wang, and Samleo L. Joseph. Modeling

and path planning of the city-climber robot part ii: 3d path planning using mixed

integer linear programming. In 2009 IEEE International Conference on Robotics

and Biomimetics (ROBIO), pages 2391–2396, 2009.

72

Chapter 7

Appendix

7.1 Planner.m

1 function ofile = integer_planner_2D(pos_init, vel_init, pos_final,...

2 wind_disturb, obs_info, opbox, num_vel_cst, num_acc_cst, num_obs_cst,...

3 acc_max, vel_max, vel_min, num_ts, dt, out_data_file)

4 % This function is integer planner in 2D environment, and the function

5 % returns the results from the solver.

6 %

7 % ofile = integer_planner_2D(pos_init,vel_init, pos_final, num_vel_cst, opbox,...

8 % num_acc_cst, acc_max, vel_max, vel_min, num_ts, dt, out_data_file)

9

10 % Version 1.0 : Lu, Hong, 17 July 2021

11 % Email: hlu39@sheffield.ac.uk

12 % Last Modified: 22 July 2021

13

14 disp('Mixed Integer Linear Planner for path planning.')

15 % assertion for the input

16 assert(length(pos_init) == 2,...

17 'Dimension of the initial position should be 2')

18 assert(length(vel_init) == 2,...

19 'Dimension of the initial velocity should be 2')

20 assert(length(pos_final) == 4,...

21 'Dimension of the final position should be 2')

22 assert(length(num_vel_cst) == 1,...

23 'Number of the velocity approximation constraint should be a scalar')

24 assert(length(num_acc_cst) == 1,...

I

25 'Number of the acceleration approximation constraint should be a scalar')

26 assert(length(num_obs_cst) == 1,...

27 'Number of the obstacle approximation constraint should be a scalar')

28 assert(length(acc_max) == 1,...

29 'Maximum acceleration should be a scalar')

30 assert(length(vel_max) == 1,...

31 'Maximum velocity should be a scalar')

32 assert(length(vel_min) == 1,...

33 'Minimum velocity should be a scalar')

34 assert(floor(num_ts) == num_ts,...

35 'Number of the time step should be scalar and integer')

36 assert(length(dt) == 1,...

37 'The time gap value should be a scalar')

38 assert(length(opbox) == 4,...

39 'The length of the opbox should be 4')

40 assert(length(wind_disturb) == 2,...

41 'Dimension of the wind disturbance should be 2')

42

43

44 if ~isempty(obs_info)

45 assert(size(obs_info, 2) == 3,...

46 'Column dimension of the obstacle should be 3, [x, y, radius]')

47 num_obs = size(obs_info, 1);

48 else

49 num_obs = 0;

50 end

51

52 % change the file root according to the custom PC

53 file_root = 'D:\Postgraduate\Dissertation\src\';

54

55

56 filename = [[file_root 'data\'] out_data_file '.dat'];

57 fid = fopen(filename, 'w');

58 ctn = 0;

59 ctn = ctn + AMPLcomment(fid, ['Data file generated for ' out_data_file]);

60

61 % write the wind disturbance

62 wind_x = wind_disturb(1);

63 wind_y = wind_disturb(2);

II

64 ctn = ctn + AMPLmatrix(fid, 'wind_disturbance',...

65 [ones(1,num_ts).*wind_x; ones(1,num_ts).*wind_y]);

66

67 ctn = ctn + AMPLscalar(fid, 'epsilon', 0.001);

68

69 % write the circle approximation

70 ctn = ctn + AMPLscalarint(fid, 'n_vel_cst', num_vel_cst);

71 ctn = ctn + AMPLscalarint(fid, 'n_acc_cst', num_acc_cst);

72 ctn = ctn + AMPLvector(fid, 'cos_vel', cos(2*pi*[1:num_vel_cst]/num_vel_cst));

73 ctn = ctn + AMPLvector(fid, 'sin_vel', sin(2*pi*[1:num_vel_cst]/num_vel_cst));

74 ctn = ctn + AMPLvector(fid, 'cos_acc', cos(2*pi*[1:num_acc_cst]/num_acc_cst));

75 ctn = ctn + AMPLvector(fid, 'sin_acc', sin(2*pi*[1:num_acc_cst]/num_acc_cst));

76 ctn = ctn + AMPLscalar(fid, 'cos_vmax', cos(pi/num_vel_cst));

77 ctn = ctn + AMPLscalar(fid, 'cos_amax', cos(pi/num_acc_cst));

78

79 % write obstacle information

80 ctn = ctn + AMPLmatrix(fid, 'obs_centroid', obs_info(:,1:2));

81 ctn = ctn + AMPLvector(fid, 'obs_radius', obs_info(:,3));

82 ctn = ctn + AMPLscalarint(fid, 'n_obs', size(obs_info, 1));

83 ctn = ctn + AMPLscalarint(fid, 'n_obs_cst', num_obs_cst);

84 ctn = ctn + AMPLvector(fid, 'cos_obs', cos(2*pi*[1:num_obs_cst]/num_obs_cst));

85 ctn = ctn + AMPLvector(fid, 'sin_obs', sin(2*pi*[1:num_obs_cst]/num_obs_cst));

86

87 % write the vel and acc limiations

88 ctn = ctn + AMPLscalar(fid, 'acc_max', acc_max);

89 ctn = ctn + AMPLscalar(fid, 'vel_max', vel_max);

90 ctn = ctn + AMPLscalar(fid, 'vel_min', vel_min);

91

92 % write time information

93 ctn = ctn + AMPLscalarint(fid, 'n_ts', num_ts);

94 ctn = ctn + AMPLscalar(fid, 'dt', dt);

95

96 % write pos_init and pos_final

97 ctn = ctn + AMPLvector(fid, 'pos_init', pos_init);

98 ctn = ctn + AMPLvector(fid, 'vel_init', vel_init);

99 ctn = ctn + AMPLvector(fid, 'pos_final', pos_final);

100 ctn = ctn + AMPLvector(fid, 'pos_cst', opbox);

101

102 fclose(fid);

III

103

104 sprintf('%d bytes written', ctn)

105 disp(['Data file generation finished. File located at ' filename])

106

107 % call the solver for solutions

108 model_root = [file_root 'mod\'];

109 solver_root = [file_root 'glpk-5.0\w64\'];

110 data_root = [file_root 'data\'];

111 output_root = [file_root 'output\'];

112

113 solver = [solver_root 'glpsol.exe '];

114 model = [model_root 'integer_planner_2D.mod '];

115 data = [data_root 'integer_planner_2D.dat '];

116 ofile = [output_root 'integer_planner_2D.txt '];

117

118 cmd = [solver '--model ' model '--data ' data '--output ' ofile];

119

120 statue = system(cmd);

121

122 if statue == 0

123 disp('solver is called.')

124 else

125 disp('solver is not called.')

126 end

127

128 end

IV

7.2 Planner.mod

1 # This is the ampl file for the 2D MILP path planning

2 # No support for the multi-waypoint assignment

3 # Support for the single vehicle for one waypoint target (finish target)

4 # with obstacle avoidance

5 # This is the part of the code for the partial requirement for

6 # the degree of M.Sc. Robotics

7 #

8 # Author: Lu, Hong

9 # E-mail: hlu39@sheffield.ac.uk

10 # If you want to use the code for own purpose, please contact the author for agreement.

11 # Last Modified: July 23, 2021

12

13 # number of time steps

14 param n_ts integer >2;

15 # non-integer for the dt

16 param dt > 0;

17 # number of obstacles

18 param n_obs integer >=0;

19

20 # wind disturbance

21 # wind disturbance at each time step in m/s

22 param wind_disturbance{1..2, 1..n_ts};

23

24 # small weighting on control input

25 param epsilon >0;

26

27 # obstacle information centroid and radius

28 param obs_centroid{1..n_obs, 1..2};

29 param obs_radius{1..n_obs};

30 # coefficient for obstacle inflation

31 param obs_inflation >= 1;

32

33 param n_vel_cst integer >=2; # number of the velocity constraints

34 param n_acc_cst integer >=2; # number of the acceleration constraints

35 param n_obs_cst integer >=2; # number of the obstacle constraints

36

37

V

38 param acc_max >0; # maximum acceleration

39 param vel_max >0; # maximum velocity

40 param vel_min >0, <= vel_max; # minimum velocity

41

42 param pos_init{1..2};

43 param vel_init{1..2};

44 # final position circle [xmin xmax ymin ymax]

45 param pos_final{1..4};

46 # position constraints [xmin xmax ymin ymax]

47 param pos_cst{1..4};

48

49 # approximation for the velocity

50 param cos_vel{1..n_vel_cst};

51 param sin_vel{1..n_vel_cst};

52

53 # approximation for the acceleration

54 param cos_acc{1..n_acc_cst};

55 param sin_acc{1..n_acc_cst};

56

57 # approximation for the obstacle

58 param cos_obs{1..n_obs_cst};

59 param sin_obs{1..n_obs_cst};

60

61 # for the under-estimation usage

62 param cos_vmax;

63 param cos_amax;

64

65 # variables

66 var pos{1..2, 1..n_ts};

67 var vel{1..2, 1..n_ts};

68 var acc{1..2, 1..(n_ts-1)};

69

70 #force magnitudes

71 var am{1..(n_ts-1)};

72

73 # 1 for finish, 0 otherwise

74 var finish{1..n_ts} binary;

75

76 # decision variable for the obstacle avoidance logic

VI

77 var obs_avoid{1..n_ts, 1..n_obs, 1..n_obs_cst} binary;

78

79 minimize time_consumption: sum{t in 1..n_ts} t*finish[t] +

80 epsilon*sum{t in 1..(n_ts-1)} am[t];

81

82 # initial state

83 subject to initpos{i in 1..2}: pos[i,1] = pos_init[i];

84 subject to initvel{i in 1..2}: vel[i,1] = vel_init[i];

85

86 # kinematics and dynamics constraints

87 subject to kinematics{i in 1..2, j in 1..(n_ts-1)}:

88 vel[i,j+1] = vel[i,j] + acc[i,j]*dt;

89

90 subject to dynamics{i in 1..2, j in 1..(n_ts-1)}:

91 pos[i,j+1] = pos[i,j] + vel[i,j]*dt + wind_disturbance[i,j]*dt + 0.5*acc[i,j]*dt*dt;

92

93 # position box constraints

94 subject to position_cst_min{i in 1..2, j in 1..n_ts}:

95 pos[i,j] >= pos_cst[2*i-1];

96 subject to position_cst_max{i in 1..2, j in 1..n_ts}:

97 pos[i,j] <= pos_cst[2*i];

98

99 # subject to velocity_cst_min{i in 1..(n_ts-1)}:

100 vel[1,i]*vel[1,i] + vel[2,i]*vel[2,i] >= (vel_min^2)/(vel_max^2);

101

102 subject to velocity_cst{i in 1..(n_ts-1), j in 1..n_vel_cst}:

103 vel[1,i]*sin_vel[j] + vel[2,i]*cos_vel[j] <= vel_max*cos_vmax;

104 subject to accelerate_cst{i in 1..(n_ts-1), j in 1..n_acc_cst}:

105 acc[1,i]*sin_acc[j] + acc[2,i]*cos_acc[j] <= acc_max*cos_amax;

106 subject to accelerate_cst_am{i in 1..(n_ts-1), j in 1..n_acc_cst}:

107 acc[1,i]*sin_acc[j] + acc[2,i]*cos_acc[j] <= am[i];

108

109 # arrival check (arrival box check)

110 subject to arrival_cst_lo{t in 1..n_ts, i in 1..2}:

111 pos[i,t] >= pos_final[2*i-1] - (pos_final[2*i-1] - pos_cst[2*i-1])*(1-finish[t]);

112 subject to arrival_cst_hi{t in 1..n_ts, i in 1..2}:

113 pos[i,t] <= pos_final[2*i] - (pos_final[2*i] - pos_cst[2*i])*(1-finish[t]);

114 subject to arrival_logic: sum{t in 1..n_ts} finish[t] = 1;

115

VII

116 # obstacle avoidance

117 subject to obstacle_cst{i in 1..n_ts, j in 1..n_obs, k in 1..n_obs_cst}:

118 (pos[1,i]-obs_centroid[j,1])*sin_obs[k] +

119 (pos[2,i] - obs_centroid[j,2])*cos_obs[k] >= obs_radius[j] - 1000*obs_avoid[i,j,k];

120 subject to obstacle_avoidance_logic{i in 1..n_ts, j in 1..n_obs}:

121 sum{k in 1..n_obs_cst} obs_avoid[i,j,k] <= n_obs_cst-1;

VIII

7.3 RHC.m

1 % single UAV obstacle avoidance MPC problem

2 %

3

4 % tidy up

5 close all

6 clear rstr vstr ustr dstr

7 clc

8

9 % initial conditions

10 r = [0 0]';

11 v = [0.8 0]';

12

13 % operation box

14 opbox = [-2 10 -2 10];

15

16 % target

17 T = [8 8 9 9];

18

19 % obstacles

20 R = [3,4,6,5;

21 6,2,7,4;

22 3,1,6,2];

23

24 No = size(R,1);

25

26 % limits

27 Fmax = 1.5;

28 Vmax = 1.5;

29

30 % step

31 dt = 1;

IX

32

33 % max horizon

34 Nt = 10;

35

36 % ******************** ROBUSTNESS ***************************

37

38 % disturbance magnitude

39 Fdist = 0.1*Fmax;

40

41 % form into system

42 A = [1 dt; 0 1];

43 B = [0.5*dt*dt; dt];

44

45 % make nilpotent controller

46 K = -acker(A,B,[0 0]);

47

48 % margins

49 dr1 = abs([1 0]*B)*Fdist;

50 dr2 = dr1 + abs([1 0]*(A+B*K)*B)*Fdist;

51 dv1 = abs([0 1]*B)*Fdist*sqrt(2);

52 dv2 = dv1 + abs([0 1]*(A+B*K)*B)*Fdist*sqrt(2);

53 df1 = abs(K*B)*Fdist*sqrt(2);

54 df2 = df1 + abs(K*(A+B*K)*B)*Fdist*sqrt(2);

55

56 % form up

57 Rm = [dr1 dr2];

58 Vm = [dv1 dv2];

59 Fm = [df1 df2];

60

61 % ******************* AMPL DATA FILE WRITE ******************

62

63 c = 0;

X

64 fid=fopen('uav_oa.dat','w');

65 c = c + AMPLcomment(fid,'Matlab generated AMPL data file\n');

66 c = c + AMPLcomment(fid,'');

67 c = c + AMPLcomment(fid,'For use with model uav_oa.mod');

68 c = c + AMPLcomment(fid,'');

69

70 % system sizes

71 c = c + AMPLscalarint(fid,'Nc',6);

72 c = c + AMPLscalarint(fid,'Nt',Nt);

73 No = size(R,1);

74 c = c + AMPLscalarint(fid,'No',No);

75 c = c + AMPLscalar(fid,'dt',dt);

76

77 % dynamics

78 c = c + AMPLscalar(fid,'Fmax',Fmax);

79 c = c + AMPLscalar(fid,'Vmax',Vmax);

80

81 % target

82 c = c + AMPLvector(fid,'T',T);

83

84 % obstacles, inc margin

85 Rd = R + (Vmax*dt/(2*sqrt(2)))*ones(No,1)*[-1 -1 1 1];

86 c = c + AMPLmatrix(fid,'R',Rd);

87

88 % margins

89 c = c + AMPLvector(fid,'Rm',Rm);

90 c = c + AMPLvector(fid,'Vm',Vm);

91 c = c + AMPLvector(fid,'Fm',Fm);

92

93 % big M

94 c = c + AMPLscalar(fid,'M',20);

95

XI

96 % control weight

97 c = c + AMPLscalar(fid,'gamma',0.001);

98

99 % completed writing file

100 fclose(fid);

101 sprintf('%d bytes written',c)

102

103 % sim loop

104 for ii=[1:(2*Nt)],

105

106 % write initial condition to data file

107 c=0;

108 fid=fopen('uav_oa_ic.dat','w');

109 c = c + AMPLcomment(fid,'Matlab generated AMPL data file\n');

110 c = c + AMPLcomment(fid,'');

111 c = c + AMPLcomment(fid,'For use with model uav_oa.mod');

112 c = c + AMPLcomment(fid,'');

113

114 % initial state

115 c = c + AMPLvector(fid,'ri',r);

116 c = c + AMPLvector(fid,'vi',v);

117

118 % completed writing file

119 fclose(fid);

120 sprintf('%d bytes written',c)

121

122 % solve

123 !myampl uav_oa.run

124

125 % load plan

126 rp = load('r.dat');

127

XII

128 % load finishing time

129 load a.dat;

130

131 % load control

132 load u.dat;

133 u = reshape(u,2,1);

134

135 % disturbance

136 thd = 2*pi*rand(1,1);

137 d = Fdist*rand(1,1)*[cos(thd); sin(thd)];

138

139 % storage

140 rstr(:,ii) = r;

141 vstr(:,ii) = v;

142 ustr(:,ii) = u;

143 dstr(:,ii) = d;

144

145 % if done

146 if (a==1),

147 break

148 end

149

150 % sim

151 r = r + v*dt + 0.5*dt*dt*(u+d);

152 v = v + dt*(u+d);

153

154 end

155

156 figure;

157 plot(rstr(1,:),rstr(2,:),'.-')

158 hold on

159 for kk=[1:No],

XIII

160 patch(R(kk,[1 3 3 1 1]),R(kk,[2 2 4 4 2]),'r')

161 patch(Rd(kk,[1 3 3 1 1]),Rd(kk,[2 2 4 4 2]),...

162 'white',...

163 'FaceAlpha', 0.0,...

164 'LineStyle', '--')

165 end

166 plot(T([1 3 3 1 1]),T([2 2 4 4 2]),'g')

167 axis equal

168 xlim(opbox(1:2))

169 ylim(opbox(3:4))

170

171 figure;

172 plot([0:size(dstr,2)-1], dstr(1,:), 'b-o')

173

174 hold on

175

176 plot([0:size(dstr,2)-1], dstr(2,:), 'r-o')

177

178 title('Disturbance during the process')

179 legend('disturbance_x','disturbance_y')

Chapter 8

Self-review

This section provides the critical self-review during the whole process of this project.

From my perspective, I demonstrated the independent capability for reviewing the lit-

erature in the certain domain, finding the problem, defining the problem and adopting

several methods for testing the proposed theories, moreover, I also applied the technique

with the new pipeline into the simulated environment for validation. The progress of the

project was reasonably stick to the original plan with minor modifications and amend-

ments of the planning chart. The topic of the project requires the solid background

of the mathematical programming which had brought difficulties into the project, by

all means, I overcame these obstacles by concentrating in the certain problem and ex-

ploring the area with the learned knowledge successfully. To implemented the method,

there also were many details to be considered than just reading it. The whole process

had developed a more considerable and sophisticated mind of mine. With the under-

standing and the hand-on experience of the MILP methods, the applications are also

carried out in the reality scenario successfully in Quadrotor UAV and surface climbers

which reflected the understanding of the problem and the creativity to migrate the tech-

nique. The whole project did a comprehensive study and implementations in MILP

planner dealing with various scenarios according to the proposed plan at the start of the

project.

